
Profile Aggregation and Policy Evaluation for Adaptive Internet Services∗

Claudio Bettini Daniele Riboni
DICo, University of Milan, Italy

via Comelico 39, I-20135 Milan, Italy
{bettini,riboni}@dico.unimi.it

Abstract

Mobile and ubiquitous computing emphasize the need
for highly adaptive delivery of Internet services. While sev-
eral systems and even products exist that guarantee shallow
or deep adaptation, they are usually based on profile in-
formation and customer relationship management modules
stored and operating at the service provider. On the con-
trary, in this paper we assume that profile information, in-
cluding user personal data and preferences, device capa-
bilities, network bandwidth, location and other contextual
information, as well as policy rules that can dynamically
change this data, are provided by different sources. We de-
scribe a formal framework for aggregating this information
and for solving conflicts between policy rules. We provide
both a theoretical study of the properties of our techniques
and a practical evaluation study obtained through a proto-
type implementation.

1. Introduction

Adaptation has been recognized as a central issue for
current and future Internet services. Several systems and
even products exist that offer shallow or deep adaptation
mostly based on user profiling obtained by the analysis of
past user interactions with a service. In these systems profile
data are stored and managed at the service provider. Adap-
tation tailored to mobile and ubiquitous computing is still
in its infancy and most systems are limited to transcoding
services that are activated by detection of specific values in
HTTP header requests. Some location based services should
also be mentioned among services offering a form of adap-
tation.

However, in our view mobility calls for much more ad-
vanced personalisation techniques which involve both pre-
sentation and content adaptation and that can be obtained

∗ This work has been partially supported by Italian MIUR (FIRB ”Web-
Minds” project N. RBNE01WEJT005).

only by the use of information which is naturally distributed
among different sources. This includes but is not limited to
user personal data and preferences, device capabilities, de-
vice status, available bandwidth, location, local time, speed,
and other contextual information, as well as past user inter-
actions with the service, and the content of the service re-
quest.

In our framework [1] we use the wordprofile in a gener-
alised sense, which includes the specification of the above
information, and we extend CC/PP [16] to provide an ade-
quate representation formalism.

Mobility also emphasises the need for modelling the
dynamics of some of the profile attributes. For example,
changes in the available bandwidth (due, e.g., to a switch
to a different mobile device and infrastructure) should cor-
respond to a change in the value of the attributes specify-
ing the desired bitrate for streaming video services. A natu-
ral approach to the modelling of this dynamics is augment-
ing the profile attributes with policies; that is, rules that set
or change certain profile attributes based on the current val-
ues of other profile attributes.

While distributed profile and policy specification enables
the enhanced form of adaption that we envision for mo-
bile computing, a technical problem can be easily identified.
Different entities (user, network provider, device manufac-
turer, service provider, etc..) may provide partial and pos-
sibly conflicting profile data. For example, the location re-
ported both by the user GPS module and by the network
operator infrastructure may be inconsistent. Similarly, con-
flicts can arise when policies given by different entities, or
even by the same entity, determine conflicting values for a
profile attribute.

The contribution of this paper can be summarised as fol-
lows: (i) we analyse sources of conflicts in profiles and poli-
cies provided by different sources, and propose resolution
strategies; (ii) by encoding policies, explicit values assign-
ments, and priorities into logic programs we provide both
a clear semantics for the intended model of a set of aggre-
gated policies, and an evaluation procedure; (iii) we show
experimental results performed on a prototype system.

A lot of related work exists, and will be addressed in Sec-
tion 6.

The rest of the paper is structured as follows: In Sec-
tion 2 we briefly illustrate the general architecture we are
considering. In Section 3 we explain how profile data and
policies are represented. In Section 4 we provide a solu-
tion for profile aggregation and policy conflict resolution
and we show some interesting properties. Section 5 briefly
reports on a prototype implementation and experimental re-
sults. Section 6 discusses related work, and Section 7 con-
cludes the paper.

2. Architecture

In principle, profile data should include any information
useful for offering a “better” response to a request; i.e., the
information characterizing the user, the device, the network
infrastructure, the context and the content involved in a ser-
vice request.

However, as mentioned in the introduction, these pieces
of information are owned by various entities located in dif-
ferent logical and physical places. We identified three main
entities involved in the task of building an aggregated pro-
file, namely: the user and his devices (calleduserin the rest
of the paper), the network operator (calledoperator), and
theservice provider. Every entity is associated with a Pro-
file Manager (calledUPM, OPM, andSPPMrespectively)
devoted to manage profile information and policies. In par-
ticular:

• TheUPMstores information related to the user and his
devices. These data include, among other things, per-
sonal information, user preferences, context informa-
tion, and device capabilities. The UPM also manages
policies defined by the user, which can dynamically
determine content and presentation parameters.

• The OPMis responsible for managing attributes de-
scribing the current network context (e.g., location,
connection profile, and network status).

• Finally, theSPPMis responsible for managing service
provider proprietary data including information about
users derived from previous service experiences and
service provider policies.

All profile manager modules also have to manage and en-
force access control policies and authentication. While a de-
tailed description of the mechanism is outside the scope of
this paper, some details will be given later in this section.

Our architecture is applicable to a scenario where a set of
service providers interact with a set of users, and each user
may use different devices to request the same services. Ser-
vice providers willing to retrieve the complete profile must
query all the relevant profile managers. Figure 1 provides a
general overview of the proposed architecture.

OPERATOR
1 1

3

USER

POLICIES PROFILE

INTERNET
 SERVER

 LOGS CONTENT

APPLICATION
 LOGICCRM

6

7 7

UPM

 IE
 MERGE

2
3

4

5

 PROFILE POLICIES

PROVIDER
SERVICE

OPM

SPPM

Figure 1. Information Flow upon User Re-
quest

The main steps involved in a typical service request are
the following: In Step 1, a user issues a request to a ser-
vice provider through his device and the connectivity of-
fered by a network operator. In order to retrieve the pro-
file information needed to perform adaptation, the service
provider queries theSPPM(Step 2), which in turn queries
the User Profile Manager (UPM) and the Operator Profile
Manager (OPM) to retrieve profile data and user’s policies
(Step 3). Then, in Step 4 theSPPMforwards collected and
local profile data and policies to the Inference Engine (IE).
In Step 5, theIE first aggregates profile data; then, it eval-
uates service provider and user policies against the merged
profile, solving possible conflicts. The resulting profile at-
tributes are then returned to the Service Provider. These at-
tribute values are used by the application logic to properly
select content and customize its presentation (Step 6). Fi-
nally, in Step 7 the formatted content is sent to the user.

The dynamic nature of some profile attribute values
claims for a mechanism for keeping up-to-date the profile
information used by the service provider during a session,
in order to allow the service provider to adapt the service
to the new context. Our choice is to include in our architec-
ture a trigger mechanism to obtain asynchronous feedback
on specific events (e.g., available bandwidth dropping be-
low a certain threshold, user location changed by more than
100 metres). Triggers can be defined over attributes man-
aged byUPMandOPM. When a trigger fires, the correspond-
ing profile manager sends the new values of the modified at-
tributes to theSPPMmodule, which should then re-evaluate
the profile attributes.

The architecture may be also easily extended by intro-
ducing other profile managers (e.g., profile managers own-
ing context services) and by extending the per-userUPM
model to a peer-to-peer network ofUPMmodules.

A very relevant issue for our architecture is privacy. The
distribution of profile data is restricted by an authorization
mechanism implemented at each profile manager. Autho-

rizations specify which entities can access which compo-
nents of a profile and the associated policies. For example,
a set ofUPMauthorizations could allow the user client in-
terface and user trusted agents to update personal data and
policies, allow the user GPS module to update location data,
and allow a set of service provider profile managers to read
the profile attribute values in certain CC/PP components.
Note that profile managers are considered trusted agents by
their corresponding entities. We adopt a formalism for au-
thorization rules which is very close to database access con-
trol models [15] and we also investigate extensions to clas-
sical approaches [4]. This ensures a clear formal semantics,
well-known properties, and the application of materializa-
tion techniques which provide enhanced performance. Au-
thentication and encryption issues are addressed with stan-
dard protocols.

3. Specification of Profiles and Policies

In order to aggregate profile information, data retrieved
from the different entities must be represented using a well
defined schema, providing a mean to understand the seman-
tics of the data. For this reason, we chose to represent pro-
file data using the Composite Capabilities/Preference Pro-
files (CC/PP) structure and vocabularies [16]. CC/PP uses
the Resource Description Framework (RDF) to create pro-
files describing device capabilities and user preferences.
In CC/PP, profiles are described using a 2-level hierarchy
in which componentscontain one or more attribute-value
pairs. CC/PP components and attributes are declared in
RDFS vocabularies; values can be eithersimple(string, in-
teger or rational number) orcomplex(set or sequence of val-
ues, represented asrdf:Bag andrdf:Seq respectively).
It must be observed that different vocabularies can identify
different attributes or components using the same name. In
order to avoid ambiguities each attribute must be identified
by means of its name, its vocabulary, its component, and its
component vocabulary. Thus, in our framework attributes
are identified using the notation

V ocabulary1.Component/V ocabulary2.Attribute

where:V ocabulary1 refers to the vocabulary the compo-
nent belongs to;Component is the ID of the component
containing the attribute;V ocabulary2 refers to the vocabu-
lary the attribute belongs to; andAttribute is the ID of the
attribute. In order to improve readability, throughout the pa-
per the attributes syntax is simplified by omitting the vocab-
ulary and possibly the component they belong to.

Currently, CC/PP is mainly used for describing device
capabilities and network conditions; well known CC/PP-
compliant vocabularies are UAProf [19] and its extensions.
These vocabularies provide an exhaustive description of de-
vice capabilities and network state; however, they do not

take into account various data that are necessary to ob-
tain a wide-ranging adaptation and personalization of ser-
vices. Vocabularies describing information like user’s in-
terests, content and presentation preferences, session vari-
ables, and user’s context are also needed. We have been
working in this direction mostly considering very confined
domains, with the goal of experimenting our framework on
test applications. Since a detailed discussion on vocabular-
ies and their sharing policies is out of the scope of this pa-
per, from now on we assume there exists a sufficiently rich
set of profile attributes that is accessible by all entities in the
framework.

As anticipated in the introduction, policies can be de-
clared by both the service provider and the user. In partic-
ular, service providers can declare policies in order to dy-
namically personalize and adapt their services considering
explicit profile data. For example, a map service provider
can choose the appropriate points of interest and the resolu-
tion of the map, depending on the user’s interests and his de-
vice capabilities. Similarly, users can declare policies in or-
der to dynamically change their preferences regarding con-
tent and presentation depending on some parameters. For
instance, a hypothetical user of the map service may pre-
fer to receive image content when browsing from his desk-
top, while choosing audio instructions when driving his car.
Both service providers and users’ policies determine new
profile data by analyzing profile attribute values retrieved
from the aggregated profile.

As usual, the choice of a representation language is a
compromise between simplicity, expressiveness, and effi-
ciency. The policy language must also support the defini-
tion of a mechanism for handling conflicts that could arise
when user and service provider policies determine different
values for the same attribute. Our choice for a policy lan-
guage has privileged low complexity, well-defined seman-
tics and well-known reasoning techniques. Indeed, our poli-
cies are specified as a set offirst-order definite clauses[18]
with negation-as-failure and no function symbols, forming
a general logic program. Each policy rule is composed by a
set of conditions on profile data (interpreted as a conjunc-
tion) that determine a new value for a profile attribute when
satisfied. A policy in our language is composed by a set of
rules of the form:

If C1 And . . . And Cn Then Ak(Vk),

whereAk is a predicate corresponding to a CC/PP attribute,
Vk is either a value or a variable, andCi is either a subgoal
like Aj(Vl) or notAj(Vl). Note that the semantics ofnot
in our rules isnegation as failure.

For example, the informal user policy:

”When I am in the main conference room using my
palm device, any communication should occur in tex-

tual form”

can be rendered by the following policy rule:

” If Location(MConfRoom)And Device(PDA)
Then PreferredMedia(Text)”

The language also includes various built-in compara-
tive predicates, i.e.,<, <=, >, >=, <>, ==, with their
standard semantics in the domain of reals. Due to the spe-
cial purpose of our logic programs, where atoms like
P (a) represent the fact ofa being the value of the pro-
file attributeP , we need to ensure that at most a single
ground atom for each predicate must be present in the pro-
gram model. This is due to the implicit assumption that
each profile attribute can have a single value (even if it
could be a composite value). For this reason, we have ex-
tended the syntax of general logic programs in order to
declare priorities between conflicting rules (i.e., rules hav-
ing the same head predicate). In particular, in our language
rules are labeled, and expressions of the formR1 Â R2

state that ruleR1 has higher priority than ruleR2. The rela-
tionÂ on the sets of rules having the same head predicate is
a strict partial order. Priorities are declared by the same en-
tity that declares the policy, and if they are not given,
a default ordering is used. Since priorities are intro-
duced in the language only for managing conflicts between
rules, we restrict priorities to be assigned to rules hav-
ing the same head predicate (i.e., rules setting a value to
the same attribute). The formal semantics of a set of pol-
icy rules and priorities is given by the unique model of the
logic program in which it can be encoded (details in Sec-
tion 4).

In order to facilitate the exchange of policy rules between
the components of the architecture, policies are wrapped in
RuleML [5], adopting the XML Schema defined for Data-
log [8] with negation. Since that Schema does not allow the
definition of priorities, we use the order of appearance of
rules as an encoding of priorities. User friendliness issues
are outside the scope of this paper, but we just mention that
web based interfaces are currently used by service providers
and users to insert and modify their own policies. User poli-
cies may also be taken or adapted from a library of prede-
fined policy rules, as well as partially learned from user be-
havior.

4. Conflict resolution

The Inference Engine module, which receives all the pro-
file data and policy rules collected from the profile man-
agers, is in charge of profile aggregation and policy evalua-
tion. In this section we explain in detail the adopted conflict
resolution strategies.

4.1. Profile Aggregation

Even if no policies are given, conflicts can arise when
different values are given by different profile managers for
the same attribute. For example, theUPMcould assign to the
Coordinatesattribute a certain valuex (obtained through
the user’s device GPS), while theOPMcould provide for the
same attribute the valuey, obtained through triangulation.
This kind of conflict resolution is performed in our architec-
ture by theMerge submodule of theIE . We have defined
a simple language for allowing service providers to spec-
ify resolution rules at the attribute level. This means that,
for instance, a service provider willing to obtain the most
accurate value for user’s location can give preference to the
value supplied by theUPMwhile keeping the value provided
by theOPMjust in case the value from theUPMis missing.
Priorities are defined byprofile resolution directiveswhich
associate to every attribute an ordered list of profile man-
agers.

Example 1 Consider the following profile resolution direc-
tives:

1. setPriority */* = (SPPM, UPM, OPM)

2. setPriority NetSpecs/* = (OPM, UPM,SPPM)

3. setPriority UserLocation/Coordinates = (UPM, OPM)

In (1), a service provider gives highest priority to its
own profile data, and lower priority to data given by the
other entities. Clearly, if no value is present in the service
provider profile the value is taken from other profiles fol-
lowing the priority directive. Directives (2) and (3) give the
highest priority to the operator for network-related data
and to the user for the singleCoordinatesattribute, respec-
tively. The absence ofSPPMin directive (3) states that val-
ues for that attribute provided by theSPPMshould never
be used.

The semantics of priorities actually depends on the type
of the attribute. When the attribute issimple, the value to be
assigned to the attribute is the one retrieved from the first en-
tity in the list that supplies it. When the attribute is of type
rdf:Bag , the values to be assigned are the ones retrieved
from all entities present in the list. If some duplication oc-
curs, only the first occurrence of the value is taken into ac-
count (i.e., we apply union). Finally, if the type of the at-
tribute isrdf:Seq , the values assigned to the attribute are
the ones provided by the entities present in the list, ordered
according to the occurrence of the entity in the list. All du-
plicates are removed keeping only the first occurrence.

4.2. Policy formal semantics and evaluation

Since policies can dynamically change the value of an at-
tribute that may have an explicit value in a profile, or that

may be changed by some other policies, they introduce non-
trivial conflicts. They can be determined by policies and/or
by explicit attribute values given by the same entity or by
different entities.

4.2.1. Conflicts and resolution strategiesA categoriza-
tion of possible conflicts is useful for determining the sys-
tem behavior. We summarize the desired behavior of the
system, in the presence of possible conflicts, considering
each case as follows:

1. Conflict between explicit values provided by two dif-
ferent entities when no policy is given for the same at-
tribute. In this case, the priority over entities for that
attribute determines which value prevails. This kind of
conflict is totally handled by theMerge submodule of
the Inference Engine.

2. Conflict between an explicit attribute value and a pol-
icy given by the same entity that could derive a differ-
ent value.A simple example of a conflict of this type
is the use of policies to override default attribute val-
ues when specific events occur and/or specific condi-
tions are verified. In this case, a policy given by an
entity, deriving a value for an attribute, intuitively has
higher priority over an explicit value for that attribute
given by the same entity. Thus, the value derived from
the policy must prevail.

3. Conflict between an explicit attribute value and a pol-
icy given by a different entity that could derive a dif-
ferent value.Conflicts of this type can occur, for in-
stance, when a provider is not able or does not want to
agree with a user explicit preference, and sets up a pol-
icy rule to override the values explicitly given by the
user. This kind of conflict can be taken care of con-
sidering the priority rules adopted in Section 4.1 for
explicit attribute values. Considering the priority over
entities for that attribute, if the entity giving the ex-
plicit value has priority over the other, then the policy
can be ignored, otherwise the policy should be evalu-
ated and if a value is derived, it prevails over the ex-
plicit one.

4. Conflict between two policies given by two different en-
tities on a specific attribute value.Similarly to conflict
(3), the priority over entities for that attribute states the
priority in firing the corresponding rule. If a rule fires,
no other conflicting rule from different entities should
fire.

5. Conflict between two policies given by the same en-
tity on a specific attribute value.There is no intuitive
way to solve such a conflict. Hence, we assume that
the entity gives a priority over these rules, using the
syntax provided by the policy language, and if this is

not given, a default ordering will be used. The prior-
ity over rules for that attribute is used to decide which
one to evaluate first. If a rule fires, no other conflict-
ing rule from the same entity should fire.

4.2.2. Implementing conflict resolution We now show
how the conflict resolution strategies we have devised can
be implemented. In the simple case when no policies are
given for a certain attribute, conflicts are easily solved by
the Merge submodule as explained above, and the result-
ing attribute value is directly passed to the Service Provider
application logic. However, when policies are present, the
resolution strategies must be integrated in the evaluation of
logical rules.

A set of policy rules can be encoded in a logic program
where each rule has the following form:

A(X) ← A1(X1), . . . , Ak(Xk), not Ak+1(Xk+1),
. . . , notAn(Xn) (1)

where A,A1, . . . , An are predicate symbols correspond-
ing to profile attribute names, andX, X1, . . . , Xn are ei-
ther variable or constant symbols and denote attribute val-
ues. Note that our language allows positive and negative
premises, with negative ones denoting the absence of a
value for a specific attribute, but constrain the head of a rule
to be positive. Moreover, safety imposes that ifX is a vari-
able appearing in the rule head, the same variable must ap-
pear in the rule body.

We ensure that the logic program corresponding to the
policy rules defined by each entity is acyclic [2], by per-
forming a simple test at the insertion of each new policy
rule, and rejecting the rule if it generates a cycle. Note that
this condition does not prevent rule chaining.

In addition to logic rules that encode policy rules, we
have to encode in the logic program the implicit and explicit
priorities that will be necessary to solve conflicts. For this
purpose, a second argument, that we callweight, is added
to each predicate, and the logic program encoding the pol-
icy rules is transformed in a programP by modifying each
rule of the form (1) into:

A(X, w) ← A1(X1,W1), . . . , Ak(Xk,Wk),
notAk+1(Xk+1,Wk+1), . . . , not An(Xn,Wn) (2)

where W1, . . . , Wn are variables with values in non-
negative integers, andw is a non negative integer deter-
mined by Algorithm 1. Note that rules labels as well as pri-
orities over rules are used only in this pre-processing
phase, and therefore are removed from the logic pro-
gram.

The weight of a rule is defined as the weight assigned to
the predicate in its head. Intuitively, rules on attributes for
which a prevailing fact exists (see point 3 in Section 4.2.1)
are not assigned any weight and discarded, all facts are

Algorithm 1 Setting the Weight parameter.

Let ({E3{,E2{,E1}}}) be the priority over entities for
the attributeA; Er be the entity amongE1, E2, E3 pro-
viding the value obtained by theMerge module forA;
REj,A be the set of rules declared byEj for A; and
REj,A,k be thekth rule∈ REj ,A in increasing order of
priority, according toEj .

\∗ Facts have always weight0 ∗\
Weight(FactA) := 0
w := 0
\∗ Repeat∀ Ej , r ≤ j ≤ 3 ∗\
for j = r to 3 do

Kj := ‖REj ,A‖
\∗ Repeat for each rule declared byEj onA ∗ \
for k = 1 to Kj do

w := w + 1
Weight(REj ,A,k) := w

end for
end for

given weight0, and other rules are assigned increasing
weights accordingly to priorities over entities and priorities
specified by each entity.

Algorithm 1 ensures that (i) no pair of rules exist having
the same head predicate symbol and the same weight; (ii)
rules having the same head predicate but higher weight have
higher priority, according to our conflict resolution strategy,
over those with lower weights.

From a logic programming point of view we can also
observe thatif the starting set of rules is acyclic, then the
above transformation preserves acyclicity. Indeed, it is eas-
ily seen that by simply adding a second argument to each
predicate, independently from the value assigned to it, a cy-
cle can exist only if one was present in the input program.

4.2.3. Evaluation The intuitive evaluation strategy is to
proceed, for each attributeA, starting from the rule hav-
ing A() in its head with the highest weight, and continuing
considering rules onA() with decreasing weights till one of
them fires. If none of them fires, the value ofA is the one
specified by the fact onA, or none if such a fact does not ex-
ist.

In order to give a standard formal semantics to our poli-
cies and to enforce the above evaluation strategy, we still
need to encode in the logic program the fact that we do
not allow two different values for the same attribute in the
output. This means that the logic program should have a
unique model and this model should contain at most one
single atom for each predicate. For this purpose, programP
is once more modified as follows.

Transformation 1 Each rule (2) is modified by adding the
subgoal:notA(Y,w + 1), whereY is a variable with the

same domain asX,X1, . . . , Xn, leading to:

A(X, w) ← A1(X1, W1), . . . , Ak(Xk,Wk),
not Ak+1(Xk+1,Wk+1), . . . , notAn(Xn,Wn),

not A(Y, w + 1). (3)

We callP ′ the resulting program.

Example 2 Consider conflicts between an explicit at-
tribute value provided by the operator, two policies given
by the same entity (e.g.; the user), and a policy given
by the service provider, possibly deriving different val-
ues for the same attributeA1; in this example, the user de-
clared two policies over the same attribute, and he gave
highest priority to the policy user2. Suppose that the pri-
ority over entities for theA1 attribute is (SPPM, UPM,
OPM). The Inference Engine preprocessor receives in in-
put from the SPPM the following logic program:

(op)A1(a) ←
(user)A3(b) ←
(p1-user)A1(X) ← A2(X)
(p2-user)A1(X) ← A3(X)
(p1-sp)A1(X) ← A4(X)
p2-userÂ p1-user

The fact (op) represents the value provided by the OPM for
A1, The fact (user) represents the value provided by the
UPM for A3, the first policy (p1-user) and the second pol-
icy (p2-user) are declared by the user, and the last policy
(p1-sp) is declared by the service provider. Applying the Al-
gorithm 1, the lowest weight (0) is assigned to the facts. The
UPM has higher priority over the OPM, and so the pre-
processor, following the priorities defined by the user
over his rules, gives weight 1 to the head of the user pol-
icy with lowest priority (p1-user) and weight 2 to the head
of the policy (p2-user). Finally, the highest weight (3) is as-
signed to the head of the policy (p1-sp), as it was declared
by the entity with highest priority (the service provider
in this case). Note that, if the OPM had highest prior-
ity than the UPM and SPPM, no rule would have been as-
signed any weight, and hence all rules would have been
discarded.

Hence, the above logic program is modified as follows:

(op)A1(a, 0) ← not A1(Y, 1)
(user)A3(b, 0) ← not A3(Y, 1)
(p1-user)A1(X, 1) ← A2(X, W), notA1(Y, 2)
(p2-user)A1(X, 2) ← A3(X, W), not A1(Y, 3)
(p1-sp)A1(X, 3) ← A4(X,W), not A1(Y, 4)

In this case, the value ofA1 is determined asb by the firing
of rule (p2-user).

We now show an essential and non-trivial property of
Transformation 1.

Theorem 1 Given an acyclic programP with weights as-
signed by Algorithm 1, the logic programP ′ obtained by
Transformation 1 is acyclic.

Since acyclic logic programs are a subclass of locally
stratified programs [2], the programP ′ is locally stratified.

Despite these formal properties guarantee the unique-
ness of the intended model, and hence provide a clear se-
mantics to our prioritized rulesets, they do not guarantee in
general an efficient evaluation procedure. However, in our
case a direct evaluation algorithm can be devised that is lin-
ear in the number of rules, since each rule has to be eval-
uated only once. The algorithm is not illustrated here for
lack of space, however, in Section 5 we show that the ad-
hoc Inference Engine we developed can evaluate our rule-
sets in linear time. Moreover, since – for most internet ser-
vices – adaptation will probably be performed considering a
small subset of CC/PP attributes, we chose to adopt a form
of goal-driven reasoning, implementing our Inference En-
gine using a backward-chaining approach. Hence, the cost
of the evaluation will be generally less than linear in the
size of policies, since a number of irrelevant rules will be
ignored.

Despite we proved that all the transformations we ap-
plied preserve acyclicity, and acyclicity of rules is guaran-
teed in each entity ruleset, it is still possible that a cycle is
created when policies are joined. The presence of such a cy-
cle can be tested quite efficiently as a preprocessing step be-
fore rule evaluation.1 However, for efficiency reasons, this
test can also be integrated in the evaluation algorithm. Once
a cycle is recognized, different strategies can be adopted.
Our approach is to disregard the rules which were involved
in the cycle, and continue the evaluation.

5. Prototype and experimental results

We have already developed part of the architecture [1];
while a description of the software implementation is out of
the scope of this paper, we will briefly describe a prototype
web application we developed for experimenting on our
framework. The goal was to build a testbed, in order to eval-
uate the effectiveness of the profile integration mechanism
against a real service. The web application is a location-
based micro-portal addressed to tourists visiting a imagi-
nary town. The portal shows an ordered list ofPoints Of In-
terest(POIs), i.e. hyperlinks that point to a web page pro-
viding multimedia information of a physical place. The list
of POIs and the multimedia content to be delivered are se-
lected by taking into account profile data such as the user lo-
cation coordinates, device capabilities, network conditions,

1 Detection of cycles in a directed graphG can be performed in time
O(N + V) whereN andV are respectively the number of nodes and
arcs inG [10].

Figure 2. Some screenshots of the prototype.

context information, as well as user and service provider
policies. We will now consider the case of John, a business
man browsing using his PDA while moving across the city.
John’s PDA has a local proxy installed and running that will
attach the URL of the profile managers to each service re-
quest (see Fig.2-A). When he connects to the portal, the list
of POIs is shown (see Fig.2-B). The micro-portal continu-
ously adapts to the context changes, showing different POIs
and multimedia content. These changes are driven by the
IE upon the evaluation of policies declared by both John
and the service provider; policies generate different direc-
tives based on the different integrated profile obtained from
the Merge module. As an example, following John’s inter-
ests, at first on top of the list of POIs appear the ”Baseball
Stadium”, and the multimedia content is delivered in high-
resolution, since John happens to be in a Wi-Fi hot spot of
its provider (see Fig.2-C). In the afternoon the weather gets
worse and thus, applying John’s policy, the application logic
brings on top a list of indoor spots. John selects the nearest
movie theatre (that appears on top of the list), and trailers
are delivered in low resolution since he is now only cov-
ered by a GPRS network service (see Fig.2-D).

Given the simple nature of the prototype scenario, adap-
tation was performed considering a small number of rules,
and essentially no appreciable delay due to conflict resolu-
tion could be observed in response time. In order to esti-
mate the feasibility of the evaluation of policies based on
logic programming for more sophisticated services, we per-
formed an experiment using the ad-hoc Inference Engine
we developed and artificial rulesets of various cardinalities.
Each rule in the rulesets had three random subgoals, one

Figure 3. Rulesets evaluation time.

of which was negative. For each attribute, each ruleset con-
tained three conflicting rules. Rulesets were properly built
in order to avoid recursion, and to allow a random rule to
fire for each set of conflicting rules over an attribute.

Figure 3 shows experimental results of executing the
rulesets on a two-processor Xeon 2.4 GHz workstation.
Evaluation times are averages of ten runs, each using a dif-
ferent random ruleset: Results show that a ruleset of 45 rules
is evaluated in around 1 millisecond, while a ruleset of 180
rules is evaluated in around 5 milliseconds. It should be
noted that evaluation times exhibit a linear increase with the
number of rules in the ruleset. In order to compare our In-
ference Engine with a widely adopted solver, we performed
the same experiments using theDLV system [17] (rules syn-
tax has been slightly modified in order to be acceptable by
the DLV parser). As expected, evaluation times are consid-
erably higher withDLV, since the class of logic programs it
considers (i.e.,Disjunctive Datalogprograms) is more com-
plex than ours.

In conclusion, rulesets evaluation time seems to be ac-
ceptable for the class of services we consider; Therefore,
we expect that response time will be dominated by the net-
work latency.

6. Related Work

With respect to the issue of integrating multi-source pro-
file data, our approach is similar to the one adopted by
DELI [7] and Intel CC/PP SDK [6]. These frameworks
adopt the profile aggregation approach of UAProf [19], con-
sisting in associating aresolution ruleto every attribute.
Whenever a conflict arises, the resolution rule determines
the value to be assigned to the attribute by considering the
order of evaluation of partial profiles. This corresponds to
assigning priorities to partial profiles, as opposed to assign-
ing priorities to single attributes as we do. Furthermore,
since resolution rules are defined in the CC/PP vocabulary,

service providers cannot have control over the aggregation
mechanism. Our approach to profile aggregation (see Sec-
tion 4.1) overcomes the above mentioned limits providing,
in our opinion, a more flexible and powerful aggregation
mechanism. Moreover, policies are not considered in these
frameworks.

Considering work on policy conflict resolution, we
should mention thePDL language and themonitor con-
cept introduced in [9].PDL, as many other policy lan-
guages, is based on the event-condition-action paradigm,
however its semantics is given in terms of nonmono-
tonic logic programs as in our approach. An interesting
extension ofPDL that allows the specification of prefer-
ences regarding the application of monitors is proposed
in [3]. However, with respect toPDL and its exten-
sions we allow chaining of rules since we believe this is
essential in our context to enable composition of poli-
cies specified by different entities.

A possible approach for implementing a form of pri-
oritized conflict resolution is to adopt PLP [11], a Prolog
compiler for logic programs with preferences. Programs are
compiled by PLP into regular logic programs, that is the
class of logic programs in which we encode our policies.
However, the need of a Prolog compilation phase poses ma-
jor problems in terms of response time, especially consider-
ing that policies can dynamically change and thus the com-
pilation should be performed run-time.

An interesting class of engines is the one ofproduc-
tion rules systems(e.g., engines based on the RETE algo-
rithm [12] such as OPS-5, CLIPS, and Jess). These engines
encode a built-in conflict resolution strategy that in certain
systems can be modified. For instance, in Jess rules can be
prioritized, and default conflict resolution strategies can be
overridden. However, the use of priorities is discouraged,
since it can have a negative effect on performance. Fur-
thermore, production rules adopt the forward-chaining ap-
proach, which do not seem to be optimal in our case, as ex-
plained in Section 4.2.3.

Datalog engines like DLV and Mandarax would be suit-
able for evaluating our rulesets after the preprocessing
phase (Transformation 1 in Section 4.2.3). Neverthe-
less, the experimental results shown in Section 5 con-
firm the intuition that even an optimized Datalog engine is
slower than an ad-hoc implementation, since the restric-
tions we impose to our rulesets can be profitably exploited
for improving the evaluation time.

A mechanism of rule evaluation against user context data
similar to ours is adopted in the Houdini framework [14].
The focus of Houdini is on providing user context infor-
mation to service providers while preserving the privacy of
data. While the policy rule languages have similar expres-
siveness, requiring acyclicity but allowing rule chaining, in
Houdini rules are declared by the user only and evaluated

by a proper user-trusted module. Being primarily focused
on adaptation, our policy mechanism is different: policies
are declared by multiple entities in order to determine cus-
tomization parameters, and our focus is on conflict resolu-
tion strategies.

The IBM CommonRules project investigates rule-based
business processes for e-commerce and is based oncour-
teous logic programs[13] which are closely related to the
ones in which we encode our policy rules. However, due to
the complex application domain addressed in that project,
their rule language is more expressive and evaluation can-
not be achieved in linear time as in our case.

7. Conclusions

In this paper we addressed the problem of profiles and
policies conflict resolution in a framework devoted to sup-
port a comprehensive adaptation and personalization of in-
ternet based services in a mobile environment. We are ex-
tending this work in several directions. One of these con-
cerns the issue of privacy policies and their enforcement by
the profile managers which is particularly critical for the
success of the framework. Other interesting issues regard
intra-session adaptation and related techniques for partial
re-evaluation of policy rules.

References

[1] A. Agostini, C. Bettini, N. Cesa-Bianchi, D. Maggiorini,
D. Riboni, M. Ruberl, C. Sala, and D. Vitali. Towards highly
adaptive services for mobile computing. InProceedings of
IFIP TC8 Working Conference on Mobile Information Sys-
tems (MOBIS), 2004.

[2] K. R. Apt and M. Bezem. Acyclic programs.New Genera-
tion Computing, 9(3/4):335–365, 1991.

[3] E. Bertino, A. Mileo, and A. Provetti. Policy monitoring with
user-preferences in PDL. InProceedings of Workshop on
Nonmonotonic Reasoning, Action, and Change (NRAC’03),
pages 37–44, 2003.

[4] C. Bettini, S. Jajodia, X. Wang, and D. Wijesekera. Provi-
sions and obligations in policy rule management.Journal of
Network and Systems Management, 11(3), 2003.

[5] H. Boley, S. Tabet, and G. Wagner. Design rationale of
RuleML: A markup language for semantic web rules. InPro-
ceedings of the International Semantic Web Working Sympo-
sium (SWWS), pages 381–401, 2001.

[6] M. Bowman, R. D. Chandler, and D. V. Keskar. Deliver-
ing customized content to mobile device using CC/PP and
the Intel CC/PP SDK. Technical report, Intel Corporation,
2002.

[7] M. Butler, F. Giannetti, R. Gimson, and T. Wiley. Device in-
dependence and the web.IEEE Internet Computing, 6(5):81–
86, September-October 2002.

[8] S. Ceri, G. Gottlob, and L. Tanca.Logic Programming and
Databases. Springer-Verlag, 1990.

[9] J. Chomicki, J. Lobo, and S. A. Naqvi. Conflict resolution
using logic programming.IEEE Transactions on Knowledge
and Data Engineering, 15(1):244–249, 2003.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduc-
tion to Algorithms. McGrawHill, 1990.

[11] J. Delgrande, T. Schaub, and H. Tompits. A framework for
compiling preferences in logic programs.Theory and Prac-
tice of Logic Programming, 3(2):129–187, 2003.

[12] C. L. Forgy. RETE: A fast algorithm for the many pat-
tern/many object pattern matching problem.Artificial Intel-
ligence, 19(1):17–37, 1982.

[13] B. Grosof. Prioritized conflict handling for logic programs.
In Proceedings of the International Logic Programming
Symposium (ILPS), pages 197–211, 1997.

[14] R. Hull, B. Kumar, D. Lieuwen, P. Patel-Schneider,
A. Sahuguet, S. Varadarajan, and A. Vyas. Enabling context-
aware and privacy-conscius user data sharing. InProceed-
ings of the 2004 IEEE International Conference on Mobile
Data Management, pages 187–198. IEEE, 2004.

[15] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrah-
manian. Flexible support for multiple access control poli-
cies. ACM Transactions on Database Systems, 26(2):214–
260, 2001.

[16] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm,
M. H. Butler, and L. Tran. Composite Capabil-
ity/Preference Profiles (CC/PP): Structure and vocabu-
laries 1.0. W3C Recommendation, W3C, January 2004.
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-
20040115/.

[17] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri,
and F. Scarcello. The DLV system for knowledge repre-
sentation and reasoning. Technical Report cs.AI/0211004,
arXiv.org, November 2002.

[18] P. Norvig and S. Russell.Artificial Intelligence. A Mod-
ern Approach. Prentice Hall Series in Artificial Intelligence,
2003.

[19] OpenMobileAlliance. User agent profile specifica-
tion. Technical Report WAP-248-UAProf20011020-
a, Wireless Application Protocol Forum, October 2001.
http://www.openmobilealliance.org/.

