

Towards Highly Adaptive Services for Mobile
Computing*

Alessandra Agostini1, Claudio Bettini1, Nicolò Cesa-Bianchi2, Dario
Maggiorini1, Daniele Riboni1, Michele Ruberl3, Cristiano Sala3, and Davide
Vitali1
1DICo, University of Milan, Italy
2DSI, University of Milan, Italy
3B Human Web Factory, Milan, Italy

Abstract: The heterogeneity of device capabilities, network conditions and user contexts that is
associated with mobile computing has emphasized the need for more advanced forms of adaptation of
Internet services. This paper presents a framework that addresses this issue by managing distributed
profile information and adaptation policies, solving possible conflicts by means of an inference
engine and prioritization techniques. The profile information considered in the framework is very
broad, including user preferences, device and network capabilities, and user location and context. The
framework has been validated by experiments on the efficiency of the proposed conflict resolution
mechanism, and by the implementation of the main components of the architecture. The paper also
illustrates a specific testbed application in the context of proximity marketing.

1. INTRODUCTION

The continued growth in the amount of content and the number of information
services available on-line has made effective personalized content delivery a hot
research topic. Considering the increasing capabilities of mobile infrastructure and
device hardware, mobile devices will probably become the most common clients
for on-line information systems. User-orientation and personalization in mobile
information systems has been recognized as a major research challenge [20].
Indeed, due to the heterogeneity of these devices, new aspects should be taken into

* This work has been partially supported by Italian MIUR (FIRB "Web-Minds" project

N.RBNE01WEJT_005)

2 Agostini et Al.

account for effective adaptation, among which device capabilities and status (e.g.,
screen resolution, battery level, network available bandwidth). Mobility also leads
to a much wider variety of user contexts including but not limited to spatio-
temporal data (e.g., location, speed, direction), and social setting situations (e.g.,
business meeting, home, shopping). If known by the service provider, this data can
be extremely valuable for adapting content delivery. In our framework, we extend
the notion of profile data to include all the information that can contribute to
achieve an effective adaptation.
Current approaches to mobile oriented adaptation are still quite limited. In most
cases, they are technically based on transcoding, and conceptually based on the
assumption that device capabilities can be deduced by the HTTP request headers.
Moreover, most approaches assume that user profile data is available server-side.
We believe that, despite a lot of information can be gathered server-side, either
explicitly given by the user or deduced by historical data on interactions with the
same user, this information cannot include many of the relevant aspects we have
mentioned above. In our view, profile data is naturally distributed and should not
be forced to be stored and managed only server-side. In our framework, each
source of profile data (e.g., user, network operator, service provider) has an
associated trusted profile manager, which is typically running on a wired
infrastructure, and that can communicate with other profile managers. Hence,
profile data can be stored and managed locally and selectively made available to
service providers. It is the responsibility of service providers to access the portion
of profile data needed for the services they are delivering. User profile data can be
made available to a new service provider by simply allowing access to the user
profile manager. This model, by storing and managing profile data at the source,
also avoids consistency problems upon updates of profile attributes (consider e.g.,
spatio-temporal or social setting information). Upon each user request the service
provider profile manager is responsible for querying the necessary profile
managers and aggregating profile data. This task includes solving conflicts due to
different values provided by different entities for the same attribute. The
introduction of profile managers also implies the adoption of a standard formalism
for the representation of profile data, enabling the interoperability among the
various entities.
In order to achieve enhanced personalization, our framework also allows users and
service providers to augment the profile attributes with policies; that is, rules that
set or change certain profile attributes based on the current values of other profile
attributes. Clearly, the introduction of policies makes it possible to have, once
more, conflicting attribute values, even considering only policies from the same
entity (service provider or user). For this reason, the policy evaluation mechanism
defined by the framework includes a quite involved conflict resolution technique.
The main contribution of this paper is the presentation of the architecture of our
framework, first from a logical point of view, and then from an implementation

Towards Highly Adaptive Services for Mobile Computing 3

point of view, in terms of a software architecture. Finally, in this paper we present
a test case with an adaptive proximity marketing application used to validate our
prototype on a real domain. A theoretical and experimental study on the soundness
and efficiency of our conflict resolution mechanism has also been performed that
validates our approach in terms of performance and scalability, but details are
beyond the scope of this paper. For lack of space, we cannot include in this paper
the discussion of two relevant issues: ’intra-session’ adaptation, and privacy. We
just mention here that we devised a distributed trigger mechanism for the former,
and adopt access control techniques [3, 16] for the latter.
The rest of the paper is structured as follows: In the following section we give an
overview of the framework logical architecture illustrating the formalism used to
represent profiles and policies, the role of the main modules and the techniques
used for conflict resolution. In Section 3 we illustrate how each component of the
logical architecture has been implemented in the corresponding software
architecture. Section 4 presents a testbed application used to demonstrate the
system prototype. Section 5 discusses related work and Section 6 presents future
research directions.

2. ARCHITECTURE

In this section we describe the logical architecture of our framework, starting with
a list of requirements that have driven the design process. We then present its main
components as well as the issues related to profile and policy representation and
management.

2.1 Requirements

Based on an analysis of a large spectrum of Internet services that would benefit
from adaptation, of the data required for implementing highly adaptive services, of
the infrastructure that is available now and will available in the near future, as well
as of the issues of data privacy and accessibility, we have identified the following
set of requirements. (i) A representation formalism is needed for the specification
of a very broad set of profile data, which integrates device capabilities with spatio-
temporal context, device and network status, as well as user preferences and
semantically rich context; (ii) A representation formalism is needed for the
specification of policies, which can dynamically determine the value of some
profile data or presentation directives based on other values, possibly provided by
different entities; (iii) Vocabularies and/or ontologies should be defined in order
for different entities to share terms for the specification of profile attributes; (iv)
The architecture should support the distributed storage and management of profiles

4 Agostini et Al.

and policies, with information stored and managed close to its source; (v) The
architecture should provide a mechanism to aggregate profile data and policies
from different sources, supporting a flexible and fine-grained conflict resolution
mechanism; (vi) The architecture should rely on an advanced system for privacy
protection which allows the user to precisely control the partial sharing of his
profile data; (vii) The architecture should provide a configurable mechanism for
’intra-session’ adaptation based on real-time update of certain profile data (e.g.,
location).
Clearly, efficiency should be taken into account when evaluating different
solutions, even if efficiency requirements may vary based on the considered
service.

2.2 Architecture Overview

The specification and implementation of a full-fledged architecture satisfying all
the requirements illustrated above is a long-term goal. The contribution illustrated
in this paper is a first step in this direction. We present an architecture where three
main entities are involved in the task of building an aggregated profile, namely: the
user with his devices (called user in the rest of the paper), the network operator
with its infrastructure (called operator), and the service provider with its own
infrastructure. A Profile Manager devoted to manage profile data and policies is
associated with each entity and will be called UPM, OPM, and SPPM,
respectively. In particular, (i) The UPM stores information related to the user and
his devices. These data include, among other things, personal information,
interests, context information, and device capabilities. The UPM also manages
policies defined by the user, which describe the content and the presentation he
wants to receive under particular conditions; (ii) The OPM is responsible for
managing attributes describing the current network context (e.g., location,
connection profile, and network status); (iii) The SPPM is responsible for
managing service provider proprietary data including information about users
derived from previous service experiences. Clearly, the architecture, including
conflict resolution mechanisms, has been designed to handle an arbitrary number
of entities (e.g., profile managers owning context services).

Towards Highly Adaptive Services for Mobile Computing 5

OPERATOR
1 1

3

USER

POLICIES PROFILE

INTERNET
 SERVER

 LOGS CONTENT

APPLICATION
 LOGICCRM

6

7 7

UPM

 IE
 MERGE

2
3

4

5

 PROFILE POLICIES

PROVIDER
SERVICE

OPM

SPPM

Figure 1. Architecture overview and data flow upon a user request

Figure 1 provides an overview of the proposed architecture. We illustrate the
system behavior by describing the main steps involved in a service request: (1) A
user issues a request to a service provider through his device and the connectivity
offered by a network operator; (2) The service provider queries its Profile Manager
(SPPM) to retrieve the profile information needed to perform adaptation; (3) The
SPPM queries the UPM and the OPM to retrieve profile data and user’s policies; (4)
The SPPM then forwards collected and local profile data and policies to the
Inference Engine (IE); (5) The IE first merges profile data; then, it evaluates
service provider and user policies against the merged profile, resolving possible
conflicts. The resulting profile attributes are then returned to the Service Provider;
(6) These attribute values are used by the application logic to properly select
content and customize its presentation; (7) Finally, the formatted content is sent to
the user.

2.3 Profile Management and Aggregation

In the following we explain the mechanism of profile management, and address the
issue of how to aggregate possibly conflicting data in a single profile.

2.3.1 Profile representation

In order to aggregate profile information, data retrieved from the different profile
managers must be represented using a well defined schema, providing a mean to
understand the semantics of the data. For this reason, we chose to represent profile

6 Agostini et Al.

data using the Composite Capabilities/Preference Profiles (CC/PP) structure and
vocabularies [19]. CC/PP uses the Resource Description Framework (RDF) to
create profiles describing device capabilities and user preferences. In CC/PP,
profiles are described using a 2-level hierarchy; attribute values can be either
simple (string, integer or rational number) or complex (set or sequence of values,
represented as rdf:Bag and rdf:Seq respectively). CC/PP attributes are
declared in RDFS vocabularies. In addition to well known CC/PP-compliant
vocabularies for device capabilities like UAProf [24] and its extensions, our
framework assumes the existence of vocabularies describing information like
user’s interests, content and presentation preferences, and user’s context in general.
Clearly, there are several issues regarding the general acceptance of a vocabulary,
the privateness of certain server-side attributes, and the uniqueness of attribute
names. In this paper, we simply assume there exists a sufficiently rich set of profile
attributes that is accessible by all entities in the framework. We also simplify the
syntax used to refer to attributes avoiding to go into RDF and namespace details.

2.3.2 Profile aggregation and conflict resolution

Once the SPPM has obtained profile data from the other profile managers, this
information is passed to the IE which is in charge of profile integration (Step 4 in
Figure 1). Conflicts can arise when different values are given for the same
attribute. For example, the UPM could assign to the Coordinates attribute a certain
value x (obtained through the GPS of the user’s device), while the OPM could
provide for the same attribute a different value y, obtained through triangulation. In
our architecture, resolution of this kind of conflicts is performed by the Merge
submodule of the IE. In order to resolve this type of conflict, the Service Provider
has to specify resolution rules at the attribute level in the form of priorities among
entities. Priorities are defined by profile resolution directives which associate to
every attribute an ordered list of profile managers, using the setPriority statement.
This means that, for instance, a service provider willing to obtain the most accurate
value for user’s location can give preference to the value supplied by the UPM
while keeping the value provided by the OPM just in case the value from the UPM is
totally missing. Continuing the above example, the directive giving higher priority
to the user for the Coordinates attribute is:

setPriority Coordinates=(UPM,OPM)
Profile resolution also depends on the type of attribute. With respect to attributes of
type Bag, the values to be assigned are the ones retrieved from all entities present
in the list. If some duplication occurs, only the first occurrence of the value is taken
into account (i.e., we apply the union operation among sets). Finally, if the type of
the attribute is Seq, the values to be assigned to the attribute are the ones provided
by the entities present in the list, ordered according to the occurrence of the entity

Towards Highly Adaptive Services for Mobile Computing 7

in the list. If some duplication occurs, only the first occurrence of the value is taken
into account.

2.4 Policies for Supporting Adaptation

As anticipated in the introduction, policies can be declared by both the service
provider and the user. In particular, service providers can declare policies in order
to dynamically personalize and adapt their services considering explicit profile
data. For example, a service provider can choose the appropriate resolution for an
image to be sent to the user, depending both on user preferences and on current
available bandwidth. Similarly, users can declare policies in order to dynamically
change their preferences regarding content and presentation depending on some
parameters. For instance, a user may prefer to receive high-resolution media when
working on his palm device, while choosing low-resolution media when using a
WAP phone. Both service providers and users’ policies determine new profile data
by analyzing profile attribute values retrieved from the aggregated profile.

2.4.1 Policy Representation

Each policy rule can be interpreted as a set of conditions on profile data that
determine a new value for a profile attribute when satisfied. A policy in our
language is composed by a set of rules of the form:

If C1 And … And Cn Then Set Ak=Vj
where Ak is an attribute, Vj is either a value or a variable, and Ci is either a
condition like Ai=Vl or not Ai with the meaning that no explicit nor derived value
for Ai exists. For example, the informal user policy:
"When I am in the main conference room using my palm device, any
communication should occur in textual form"
can be rendered by the following policy rule:
"If Location=’MConfRoom’ And Device=’PDA’ Then Set
PreferredMedia=’Text’"

2.4.2 Conflicts and resolution strategies

Since policies can dynamically change the value of an attribute that may have an
explicit value in a profile, or that may be changed by some other policies, they
introduce nontrivial conflicts. They can be determined by policies and/or by
explicit attribute values given by the same entity or by different entities. We have
defined conflict resolution strategies specific for different conflict situations. While
a complete description of possible conflicts and of the solutions implemented in
our architecture is beyond the scope of this paper (see [4] for further details), here

8 Agostini et Al.

we just mention the basic technique. We implement conflict resolution strategies
by transforming the logical program defined by the policy rules. Transformations
basically consist in the assignment of a proper weight to each rule and in the
introduction of negation as failure. In the resulting program, each rule with a
generic head predicate A and weight w is evaluated only after the evaluation of the
rule with the same head predicate and weight w+1. When a rule with weight w
fires, rules with the same head predicate having a lower weight are discarded. The
weight assignment algorithm ensures that the evaluation of the program satisfies
the conflict resolution strategies, and a direct evaluation algorithm can be devised
that is linear in the number of rules.

3. SOFTWARE ARCHITECTURE

An illustration of the software modules which have been developed is shown in
Figure 2. There are two distinct data flows, which correspond to profile
modifications and service requests, identified by Sequence I and II, respectively.
The local proxy (C) is an application running on the user device which adds
custom fields to the HTTP request headers, thus enabling the SPPM to locate the
user’s ID and the URIs of his UPM and OPM. Currently, the local proxy is
developed in C# (see Figure 3-A) and can be executed over the .NET (Compact)
Framework. The UPM, OPM and SPPM consoles (B, P, Q) are browser-based web
applications, which allow to modify profile attributes on the UPM, OPM and
SPPM repositories. The Service Provider Application Logic module (E) is the
component which delivers the profile- and context-dependent service to the user.
The application logic implementation depends on the type of service to be
delivered; the implementation of the application logic for the prototype web
application we developed is briefly described in Section 4.
Besides managing local profiles and policies, the SPPM retrieves data from the
remote profile managers and from its own repositories and feeds them to the Merge
(I) and IE (J) modules. The integrated profile is returned via SOAP to the service
provider application logic. The Merge module (I) receives from the Business Logic
EJB (H) the profile resolution directives and the objects representing the remote
profiles. Attribute values are retrieved from profiles using RDQL, a query
language for RDF documents implemented by the Jena Toolkit [17]. The
integrated profile is built by applying the service provider profile resolution
directives, as explained in Section 2. Finally, the object representing the integrated
profile is forwarded to the Inference Engine module (J), together with the set of
user and content provider policies, and profile resolution directives.

Towards Highly Adaptive Services for Mobile Computing 9

Figure 2. The developed software modules

Before starting the evaluation phase, the IE module modifies the logic program
(composed by facts retrieved from the integrated profile, and policies) in order to
apply the conflict resolution strategies described in Section 2. User and service
provider policies are represented in RuleML [5]. The evaluation of the logic
program is performed using Mandarax, an open source Java package for deductive
rules. Mandarax is designed as a backward reasoning engine, and supports
negation as failure, which is needed in our case to implement the conflict
resolution mechanism. The output of the derivation process is a result-set in which
every row contains a value of an attribute. These values are used to update the Java
object representing the integrated profile, which is returned to the EJB (F).
Our planned technology for the Profile Managers includes the adoption of an RDF
server such as Joseki [18]. However, at the time of writing, the profile repositories
(L, M, O) are a collection of simple files in CC/PP format. Policy repositories (K,
N) are a collection of RuleML files which describe the user and service provider
policies.

10 Agostini et Al.

Figure 3. Some screen-shots of the web application prototype

4. AN ADAPTIVE PROXIMITY MARKETING SERVICE

In order to test our software architecture we developed a set of prototype services.
In this section, we illustrate a web-based adaptive proximity marketing service. Its
main goal is to provide targeted, location-aware advertisements about sales on
items contained in a user’s personal shopping list. For example, if the user’s
shopping list includes a specific camera model and the user is walking on a street
where a shop has that camera on sale, the service will list an appropriate
geolocalized ad on the user’s device, possibly linked to multimedia content details.
While we are not the first to consider such a service, our emphasis is on adaptation
based on user and service provider policies. Advertisements are chosen and ranked
by considering not only the personal shopping list, but other profile data such as
the user’s location, interests, and action context. Users can be either paying or non-
paying service subscribers. Non-paying subscribers may also receive unsolicited
advertisements regarding items which are not on their shopping list. The choice of
items for unsolicited advertisements can be driven by standard CRM software as
well as from aggregated profile data. The service currently implemented is
browser-based, and provided on a per-request basis (i.e., it is a pull service). The
service is activated by accessing a specific web page, and the delivery of content is

Towards Highly Adaptive Services for Mobile Computing 11

performed by the Cocoon programming framework [10]. Upon each request, the
service returns a web page with the list of ads, which is automatically refreshed
after a certain period of time. This time is dynamically set server-side based on
aggregated profile data, and communicated to the (micro)browser using a META
element.

Table 1. An excerpt of policies

Policy Owner
(1) If DeviceType = ’PDA’ Then Set MediaQuality = ’High’ user
(2) If AvailableBandwidth < 56kbps Then Set MediaQuality = ’Low’ service provider
(3) If UserSpeed = ’Slow’ Then Set RefreshTime = ’15min’ service provider
(4) If UserSpeed = ’Fast’ Then Set RefreshTime = ’3min’ service provider

Table 2. An excerpt of profile resolution directives

Profile Resolution Directive
(5) setPriority AllowRecommandations = (SPPM, UPM)
(6) setPriority Coordinates = (UPM, OPM)
(7) setPriority MediaQuality = (SPPM, UPM)
(8) setPriority UserSpeed = (UPM, OPM, SPPM)

In order to show some of the profile resolution directives and policies which
determine service adaptation, we report one of the test cases we have considered:
An hypothetical user is browsing around a hypothetical town with a PDA in his
hands. We appropriately divided the town into bi-dimensional cells identified by a
pair of coordinates, further assuming that some of the cells are covered by a GPRS
connectivity service, while others by a more efficient WiFi HotSpot service.
Movements of our user and context changes are simulated. The service needs to
continuously adapt to user’s changes of context. The screen-shots in Figure 3 show
how different ads are displayed depending on the user’s location and time of the
day. In addition, the presentation is properly adapted to the user’s device
capabilities and available bandwidth. The adaptation parameters are set by the IE
module, upon the evaluation of policies declared by the user and by the service
provider. For instance, we suppose the user declared policy (1) in Table 1 to
request high-quality multimedia content when using his PDA. Similarly, service
providers can declare policies for determining content and presentation directives.
A possibly conflicting policy (2) is declared by the service provider, stating to
deliver low-quality multimedia contents when the available bandwidth drops below
a certain threshold. The refresh rate of the service is determined by policies (3) and
(4). In particular, policy (3) determines a long refresh interval when the user is

12 Agostini et Al.

moving slowly, while policy (4) shortens the refresh interval when the user is
moving fast.
The firing of policy rules may depend on the aggregated profile obtained by the
Merge module, which in turn relies on profile resolution directives. We remind that
this kind of directives can only be specified by the service provider. Some profile
resolution directives are given in Table 2. For instance, directive (8) is intended to
solve conflicts due to different estimations of the user’s current speed given by
different entities. The service provider gives higher confidence to the value
provided by the UPM, since speed can be estimated precisely by user-side sensors
(e.g., supplied by car appliances or GPS-enabled devices). If no value for speed is
given by the user, the value provided by the operator (if present) is taken into
account; otherwise, the value inferred by the service provider analyzing the history
of the user’s location is chosen.

5. RELATED WORK

Many research groups and companies have been working, at different levels, to
provide effective solutions for service adaptation and personalization in a multi-
device and mobile environment. In the following, we report on the efforts we
consider closer to our work. Our approach is similar to the one underlying DELI
[8] and Intel CC/PP SDK [6]. However, our framework provides a finer control on
profile aggregation, and includes a policy mechanism. Various other architectures
address the problem of service adaptation in mobile environments [2, 7, 9, 11, 14,
21]. The distinguishing feature of our architecture is that in our case the adaptation
process is driven by the evaluation of distributed profile data and policies which
are stored on and handled by modules in the trusted domain of their data source.
For example, the Houdini framework [14] provides a mechanism of rule evaluation
against user context information that is similar to ours. However, policy rules in
[14] are specified by users only and stored on and handled by a single module.
Since efficiency is a major concern in their applications this module is in the
domain of the service provider. Moreover much less emphasis is given to conflict
resolution issues.
We claim that our framework is able to support a wide range of context-aware
applications, which can profitably exploit it for adapting and personalize their
services to users. Even focusing on the domain of the application described in this
paper, the number of related works is large (e.g., [12, 15, 23]). In particular, the
ViaVis’ Proximity Marketing allows users to personalize the reception of
advertisements in terms of their location, time and content. Again, a main
difference in our service is that profile data and user preferences are not stored and
managed at the service provider, but kept in the user trusted domain (at the UPM).

Towards Highly Adaptive Services for Mobile Computing 13

This has several advantages especially when multiple services need to access
overlapping portions of profile data (centralized updates, privacy control).
Moreover, our solution provides users with a richer set of personalization
parameters, which allow for a better definition of user contextual situations and a
finer personalization of the service.

6. CONCLUSIONS AND FUTURE WORK

In this paper we presented a framework supporting adaptation and personalization
of mobile Internet services. We illustrated the software architecture adopted for its
implementation, and a prototype service used as a test-bed. Even if the main
components of the framework are consolidated, various extensions and
enhancements are possible and already foreseen. In particular, our profile
technology can be meaningfully coupled with various content-based services and
recommendation systems. Thanks to our framework, these systems can exploit
both the explicit rules expressed as preferences by users, and the information
regarding the context the users are immersed in. Moreover, various interesting
works exist which are focused on gathering information about the user and its
environment on the basis of sensors (e.g., [1, 22]). We believe that the integration
of numerous sources of profile data (i.e., sensors) and related processing modules
in our framework would be a natural and promising research direction.

REFERENCES

[1] AmbieSense. European project # IST-2001-34244. http://www.ambiesense.com/
[2] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli. Context-aware Middleware for
Resource Management in the Wireless Internet. IEEE Trans. on Software Engineering, 29(12):1086–
1099, IEEE, 2003.
[3] C. Bettini, S. Jajodia, X. Wang, and D. Wijesekera. Provisions and obligations in policy rule
management. Journal of Network and Systems Management, 11(3):351–372, Kluwer, 2003.
[4] C. Bettini and D. Riboni. Profile Aggregation and Policy Evaluation for Adaptive Internet
Services. In Proc. of The First Annual International Conference on Mobile and Ubiquitous Systems:
Networking and Services (Mobiquitous), 2004.
[5] H. Boley, S. Tabet, and G. Wagner. Design Rationale of RuleML: A Markup Language for
Semantic Web Rules. In Proc. of the first Semantic Web Working Symposium, pages 381–402, 2001.
[6] M. Bowman, R. D. Chandler, and D. V. Keskar. Delivering Customized Content to Mobile Device
Using CC/PP and the Intel CC/PP SDK. Intel Technical Report, Intel, 2002.
[7] K. H. Britton, R. Case, A. Citron, R. Floyed, Y. Li, C. Seekamp, B. Topol, and K. Tracey.
Transcoding. Extending e-business to new environments. In IBM Systems Journal, 40(1):153–178,
IBM, 2001.
[8] M. Butler. DELI: A DElivery context LIbrary for CC/PP and UAProf. External Technical Report
HPL-2001-260, HP, 2002.

14 Agostini et Al.

[9] H. Chen, T. Finin, and A. Joshi. Semantic Web in the Context Broker Architecture. In Proc. of
IEEE International Conference on Pervasive Computing and Communications (PerCom2004), pages
277-286, IEEE, 2004.
[10] The Apache Cocoon Project. Apache Software Foundation. http://cocoon.apache.org
[11] C. Efstratiou, K. Cheverst, N. Davies, and A. Friday. An Architecture for the Effective Support
of Adaptive Context-Aware Applications. In Proc. of the International Conference on Mobile Data
Management, pages 15–26, IEEE, 2001.
[12] ELBA: European Location Based Advertising. European project # IST-2001-36530.
http://www.e-lba.com/
[13] B. Grosof. Prioritized Conflict Handling for Logic Programs. In Proc. of Symposium on Logic
Programming (ILPS), pages 197-211, 1997.
[14] R. Hull, B. Kumar, D. Lieuwen, P. Patel-Schneider, A. Sahuguet, S. Varadarajan, and A. Vyas.
Enabling Context-Aware and Privacy-Conscius User Data Sharing. In Proc. of the International
Conference on Mobile Data Management, pages 187–198, IEEE, 2004.
[15] IMAP: An innovative Interactive Mobile Advertising Platform. European project # IST-2001-
33357. http://www.imapproject.org/imapproject/hmain.jsp
[16] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible Support for Multiple
Access Control Policies. In ACM Transactions on Database Systems, 26(2):214–260, ACM press,
2001.
[17] Jena 2 - A Semantic Web Framework. http://jena.sourceforge.net/
[18] Joseki - The Jena RDF server. http://www.joseki.org
[19] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm, M. Butler, and L. Tran, editors.
Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies 1.0, W3C
Recommendation, 15 January 2004. http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-
20040115/
[20] J. Krogstie, K. Lyytinen, A. L. Opdahl, B. Pernici, K. Siau, and K. Smolander. Mobile
Information Systems - Research Challenges on the Conceptual and Logical Level. In Proc. of
ER’02/IFIP8.1 Workshop on Conceptual Modelling Approaches to Mobile Information Systems
Development, pages 1-13, Springer, 2002.
[21] S. Riché and G. Brebner. Storing and Accessing User Context. In Proc. of the International
Conference on Mobile Data Management, pages 1-12, IEEE, 2003.
[22] D. Terdinam. Soon, Marketing Will Follow You. Wired News, 2003.
http://www.wired.com/news/technology/0,1282,61597,00.html
[23] ViaVis Mobile Solutions Inc. http://www.viavis.com
[24] User Agent Profile Specification. WAP-248-UAProf. http://www.wapforum.org/

