index.js 26.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
'use strict';

Object.defineProperty(exports, '__esModule', {
  value: true
});
exports.default = void 0;

/**
 * Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
 *
 * This source code is licensed under the MIT license found in the
 * LICENSE file in the root directory of this source tree.
 *
 */
// This diff-sequences package implements the linear space variation in
// An O(ND) Difference Algorithm and Its Variations by Eugene W. Myers
// Relationship in notation between Myers paper and this package:
// A is a
// N is aLength, aEnd - aStart, and so on
// x is aIndex, aFirst, aLast, and so on
// B is b
// M is bLength, bEnd - bStart, and so on
// y is bIndex, bFirst, bLast, and so on
// Δ = N - M is negative of baDeltaLength = bLength - aLength
// D is d
// k is kF
// k + Δ is kF = kR - baDeltaLength
// V is aIndexesF or aIndexesR (see comment below about Indexes type)
// index intervals [1, N] and [1, M] are [0, aLength) and [0, bLength)
// starting point in forward direction (0, 0) is (-1, -1)
// starting point in reverse direction (N + 1, M + 1) is (aLength, bLength)
// The “edit graph” for sequences a and b corresponds to items:
// in a on the horizontal axis
// in b on the vertical axis
//
// Given a-coordinate of a point in a diagonal, you can compute b-coordinate.
//
// Forward diagonals kF:
// zero diagonal intersects top left corner
// positive diagonals intersect top edge
// negative diagonals insersect left edge
//
// Reverse diagonals kR:
// zero diagonal intersects bottom right corner
// positive diagonals intersect right edge
// negative diagonals intersect bottom edge
// The graph contains a directed acyclic graph of edges:
// horizontal: delete an item from a
// vertical: insert an item from b
// diagonal: common item in a and b
//
// The algorithm solves dual problems in the graph analogy:
// Find longest common subsequence: path with maximum number of diagonal edges
// Find shortest edit script: path with minimum number of non-diagonal edges
// Input callback function compares items at indexes in the sequences.
// Output callback function receives the number of adjacent items
// and starting indexes of each common subsequence.
// Either original functions or wrapped to swap indexes if graph is transposed.
// Indexes in sequence a of last point of forward or reverse paths in graph.
// Myers algorithm indexes by diagonal k which for negative is bad deopt in V8.
// This package indexes by iF and iR which are greater than or equal to zero.
// and also updates the index arrays in place to cut memory in half.
// kF = 2 * iF - d
// kR = d - 2 * iR
// Division of index intervals in sequences a and b at the middle change.
// Invariant: intervals do not have common items at the start or end.
const pkg = 'diff-sequences'; // for error messages

const NOT_YET_SET = 0; // small int instead of undefined to avoid deopt in V8
// Return the number of common items that follow in forward direction.
// The length of what Myers paper calls a “snake” in a forward path.

const countCommonItemsF = (aIndex, aEnd, bIndex, bEnd, isCommon) => {
  let nCommon = 0;

  while (aIndex < aEnd && bIndex < bEnd && isCommon(aIndex, bIndex)) {
    aIndex += 1;
    bIndex += 1;
    nCommon += 1;
  }

  return nCommon;
}; // Return the number of common items that precede in reverse direction.
// The length of what Myers paper calls a “snake” in a reverse path.

const countCommonItemsR = (aStart, aIndex, bStart, bIndex, isCommon) => {
  let nCommon = 0;

  while (aStart <= aIndex && bStart <= bIndex && isCommon(aIndex, bIndex)) {
    aIndex -= 1;
    bIndex -= 1;
    nCommon += 1;
  }

  return nCommon;
}; // A simple function to extend forward paths from (d - 1) to d changes
// when forward and reverse paths cannot yet overlap.

const extendPathsF = (d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF) => {
  // Unroll the first iteration.
  let iF = 0;
  let kF = -d; // kF = 2 * iF - d

  let aFirst = aIndexesF[iF]; // in first iteration always insert

  let aIndexPrev1 = aFirst; // prev value of [iF - 1] in next iteration

  aIndexesF[iF] += countCommonItemsF(
    aFirst + 1,
    aEnd,
    bF + aFirst - kF + 1,
    bEnd,
    isCommon
  ); // Optimization: skip diagonals in which paths cannot ever overlap.

  const nF = d < iMaxF ? d : iMaxF; // The diagonals kF are odd when d is odd and even when d is even.

  for (iF += 1, kF += 2; iF <= nF; iF += 1, kF += 2) {
    // To get first point of path segment, move one change in forward direction
    // from last point of previous path segment in an adjacent diagonal.
    // In last possible iteration when iF === d and kF === d always delete.
    if (iF !== d && aIndexPrev1 < aIndexesF[iF]) {
      aFirst = aIndexesF[iF]; // vertical to insert from b
    } else {
      aFirst = aIndexPrev1 + 1; // horizontal to delete from a

      if (aEnd <= aFirst) {
        // Optimization: delete moved past right of graph.
        return iF - 1;
      }
    } // To get last point of path segment, move along diagonal of common items.

    aIndexPrev1 = aIndexesF[iF];
    aIndexesF[iF] =
      aFirst +
      countCommonItemsF(aFirst + 1, aEnd, bF + aFirst - kF + 1, bEnd, isCommon);
  }

  return iMaxF;
}; // A simple function to extend reverse paths from (d - 1) to d changes
// when reverse and forward paths cannot yet overlap.

const extendPathsR = (d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR) => {
  // Unroll the first iteration.
  let iR = 0;
  let kR = d; // kR = d - 2 * iR

  let aFirst = aIndexesR[iR]; // in first iteration always insert

  let aIndexPrev1 = aFirst; // prev value of [iR - 1] in next iteration

  aIndexesR[iR] -= countCommonItemsR(
    aStart,
    aFirst - 1,
    bStart,
    bR + aFirst - kR - 1,
    isCommon
  ); // Optimization: skip diagonals in which paths cannot ever overlap.

  const nR = d < iMaxR ? d : iMaxR; // The diagonals kR are odd when d is odd and even when d is even.

  for (iR += 1, kR -= 2; iR <= nR; iR += 1, kR -= 2) {
    // To get first point of path segment, move one change in reverse direction
    // from last point of previous path segment in an adjacent diagonal.
    // In last possible iteration when iR === d and kR === -d always delete.
    if (iR !== d && aIndexesR[iR] < aIndexPrev1) {
      aFirst = aIndexesR[iR]; // vertical to insert from b
    } else {
      aFirst = aIndexPrev1 - 1; // horizontal to delete from a

      if (aFirst < aStart) {
        // Optimization: delete moved past left of graph.
        return iR - 1;
      }
    } // To get last point of path segment, move along diagonal of common items.

    aIndexPrev1 = aIndexesR[iR];
    aIndexesR[iR] =
      aFirst -
      countCommonItemsR(
        aStart,
        aFirst - 1,
        bStart,
        bR + aFirst - kR - 1,
        isCommon
      );
  }

  return iMaxR;
}; // A complete function to extend forward paths from (d - 1) to d changes.
// Return true if a path overlaps reverse path of (d - 1) changes in its diagonal.

const extendOverlappablePathsF = (
  d,
  aStart,
  aEnd,
  bStart,
  bEnd,
  isCommon,
  aIndexesF,
  iMaxF,
  aIndexesR,
  iMaxR,
  division
) => {
  const bF = bStart - aStart; // bIndex = bF + aIndex - kF

  const aLength = aEnd - aStart;
  const bLength = bEnd - bStart;
  const baDeltaLength = bLength - aLength; // kF = kR - baDeltaLength
  // Range of diagonals in which forward and reverse paths might overlap.

  const kMinOverlapF = -baDeltaLength - (d - 1); // -(d - 1) <= kR

  const kMaxOverlapF = -baDeltaLength + (d - 1); // kR <= (d - 1)

  let aIndexPrev1 = NOT_YET_SET; // prev value of [iF - 1] in next iteration
  // Optimization: skip diagonals in which paths cannot ever overlap.

  const nF = d < iMaxF ? d : iMaxF; // The diagonals kF = 2 * iF - d are odd when d is odd and even when d is even.

  for (let iF = 0, kF = -d; iF <= nF; iF += 1, kF += 2) {
    // To get first point of path segment, move one change in forward direction
    // from last point of previous path segment in an adjacent diagonal.
    // In first iteration when iF === 0 and kF === -d always insert.
    // In last possible iteration when iF === d and kF === d always delete.
    const insert = iF === 0 || (iF !== d && aIndexPrev1 < aIndexesF[iF]);
    const aLastPrev = insert ? aIndexesF[iF] : aIndexPrev1;
    const aFirst = insert
      ? aLastPrev // vertical to insert from b
      : aLastPrev + 1; // horizontal to delete from a
    // To get last point of path segment, move along diagonal of common items.

    const bFirst = bF + aFirst - kF;
    const nCommonF = countCommonItemsF(
      aFirst + 1,
      aEnd,
      bFirst + 1,
      bEnd,
      isCommon
    );
    const aLast = aFirst + nCommonF;
    aIndexPrev1 = aIndexesF[iF];
    aIndexesF[iF] = aLast;

    if (kMinOverlapF <= kF && kF <= kMaxOverlapF) {
      // Solve for iR of reverse path with (d - 1) changes in diagonal kF:
      // kR = kF + baDeltaLength
      // kR = (d - 1) - 2 * iR
      const iR = (d - 1 - (kF + baDeltaLength)) / 2; // If this forward path overlaps the reverse path in this diagonal,
      // then this is the middle change of the index intervals.

      if (iR <= iMaxR && aIndexesR[iR] - 1 <= aLast) {
        // Unlike the Myers algorithm which finds only the middle “snake”
        // this package can find two common subsequences per division.
        // Last point of previous path segment is on an adjacent diagonal.
        const bLastPrev = bF + aLastPrev - (insert ? kF + 1 : kF - 1); // Because of invariant that intervals preceding the middle change
        // cannot have common items at the end,
        // move in reverse direction along a diagonal of common items.

        const nCommonR = countCommonItemsR(
          aStart,
          aLastPrev,
          bStart,
          bLastPrev,
          isCommon
        );
        const aIndexPrevFirst = aLastPrev - nCommonR;
        const bIndexPrevFirst = bLastPrev - nCommonR;
        const aEndPreceding = aIndexPrevFirst + 1;
        const bEndPreceding = bIndexPrevFirst + 1;
        division.nChangePreceding = d - 1;

        if (d - 1 === aEndPreceding + bEndPreceding - aStart - bStart) {
          // Optimization: number of preceding changes in forward direction
          // is equal to number of items in preceding interval,
          // therefore it cannot contain any common items.
          division.aEndPreceding = aStart;
          division.bEndPreceding = bStart;
        } else {
          division.aEndPreceding = aEndPreceding;
          division.bEndPreceding = bEndPreceding;
        }

        division.nCommonPreceding = nCommonR;

        if (nCommonR !== 0) {
          division.aCommonPreceding = aEndPreceding;
          division.bCommonPreceding = bEndPreceding;
        }

        division.nCommonFollowing = nCommonF;

        if (nCommonF !== 0) {
          division.aCommonFollowing = aFirst + 1;
          division.bCommonFollowing = bFirst + 1;
        }

        const aStartFollowing = aLast + 1;
        const bStartFollowing = bFirst + nCommonF + 1;
        division.nChangeFollowing = d - 1;

        if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {
          // Optimization: number of changes in reverse direction
          // is equal to number of items in following interval,
          // therefore it cannot contain any common items.
          division.aStartFollowing = aEnd;
          division.bStartFollowing = bEnd;
        } else {
          division.aStartFollowing = aStartFollowing;
          division.bStartFollowing = bStartFollowing;
        }

        return true;
      }
    }
  }

  return false;
}; // A complete function to extend reverse paths from (d - 1) to d changes.
// Return true if a path overlaps forward path of d changes in its diagonal.

const extendOverlappablePathsR = (
  d,
  aStart,
  aEnd,
  bStart,
  bEnd,
  isCommon,
  aIndexesF,
  iMaxF,
  aIndexesR,
  iMaxR,
  division
) => {
  const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR

  const aLength = aEnd - aStart;
  const bLength = bEnd - bStart;
  const baDeltaLength = bLength - aLength; // kR = kF + baDeltaLength
  // Range of diagonals in which forward and reverse paths might overlap.

  const kMinOverlapR = baDeltaLength - d; // -d <= kF

  const kMaxOverlapR = baDeltaLength + d; // kF <= d

  let aIndexPrev1 = NOT_YET_SET; // prev value of [iR - 1] in next iteration
  // Optimization: skip diagonals in which paths cannot ever overlap.

  const nR = d < iMaxR ? d : iMaxR; // The diagonals kR = d - 2 * iR are odd when d is odd and even when d is even.

  for (let iR = 0, kR = d; iR <= nR; iR += 1, kR -= 2) {
    // To get first point of path segment, move one change in reverse direction
    // from last point of previous path segment in an adjacent diagonal.
    // In first iteration when iR === 0 and kR === d always insert.
    // In last possible iteration when iR === d and kR === -d always delete.
    const insert = iR === 0 || (iR !== d && aIndexesR[iR] < aIndexPrev1);
    const aLastPrev = insert ? aIndexesR[iR] : aIndexPrev1;
    const aFirst = insert
      ? aLastPrev // vertical to insert from b
      : aLastPrev - 1; // horizontal to delete from a
    // To get last point of path segment, move along diagonal of common items.

    const bFirst = bR + aFirst - kR;
    const nCommonR = countCommonItemsR(
      aStart,
      aFirst - 1,
      bStart,
      bFirst - 1,
      isCommon
    );
    const aLast = aFirst - nCommonR;
    aIndexPrev1 = aIndexesR[iR];
    aIndexesR[iR] = aLast;

    if (kMinOverlapR <= kR && kR <= kMaxOverlapR) {
      // Solve for iF of forward path with d changes in diagonal kR:
      // kF = kR - baDeltaLength
      // kF = 2 * iF - d
      const iF = (d + (kR - baDeltaLength)) / 2; // If this reverse path overlaps the forward path in this diagonal,
      // then this is a middle change of the index intervals.

      if (iF <= iMaxF && aLast - 1 <= aIndexesF[iF]) {
        const bLast = bFirst - nCommonR;
        division.nChangePreceding = d;

        if (d === aLast + bLast - aStart - bStart) {
          // Optimization: number of changes in reverse direction
          // is equal to number of items in preceding interval,
          // therefore it cannot contain any common items.
          division.aEndPreceding = aStart;
          division.bEndPreceding = bStart;
        } else {
          division.aEndPreceding = aLast;
          division.bEndPreceding = bLast;
        }

        division.nCommonPreceding = nCommonR;

        if (nCommonR !== 0) {
          // The last point of reverse path segment is start of common subsequence.
          division.aCommonPreceding = aLast;
          division.bCommonPreceding = bLast;
        }

        division.nChangeFollowing = d - 1;

        if (d === 1) {
          // There is no previous path segment.
          division.nCommonFollowing = 0;
          division.aStartFollowing = aEnd;
          division.bStartFollowing = bEnd;
        } else {
          // Unlike the Myers algorithm which finds only the middle “snake”
          // this package can find two common subsequences per division.
          // Last point of previous path segment is on an adjacent diagonal.
          const bLastPrev = bR + aLastPrev - (insert ? kR - 1 : kR + 1); // Because of invariant that intervals following the middle change
          // cannot have common items at the start,
          // move in forward direction along a diagonal of common items.

          const nCommonF = countCommonItemsF(
            aLastPrev,
            aEnd,
            bLastPrev,
            bEnd,
            isCommon
          );
          division.nCommonFollowing = nCommonF;

          if (nCommonF !== 0) {
            // The last point of reverse path segment is start of common subsequence.
            division.aCommonFollowing = aLastPrev;
            division.bCommonFollowing = bLastPrev;
          }

          const aStartFollowing = aLastPrev + nCommonF; // aFirstPrev

          const bStartFollowing = bLastPrev + nCommonF; // bFirstPrev

          if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {
            // Optimization: number of changes in forward direction
            // is equal to number of items in following interval,
            // therefore it cannot contain any common items.
            division.aStartFollowing = aEnd;
            division.bStartFollowing = bEnd;
          } else {
            division.aStartFollowing = aStartFollowing;
            division.bStartFollowing = bStartFollowing;
          }
        }

        return true;
      }
    }
  }

  return false;
}; // Given index intervals and input function to compare items at indexes,
// divide at the middle change.
//
// DO NOT CALL if start === end, because interval cannot contain common items
// and because this function will throw the “no overlap” error.

const divide = (
  nChange,
  aStart,
  aEnd,
  bStart,
  bEnd,
  isCommon,
  aIndexesF,
  aIndexesR,
  division // output
) => {
  const bF = bStart - aStart; // bIndex = bF + aIndex - kF

  const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR

  const aLength = aEnd - aStart;
  const bLength = bEnd - bStart; // Because graph has square or portrait orientation,
  // length difference is minimum number of items to insert from b.
  // Corresponding forward and reverse diagonals in graph
  // depend on length difference of the sequences:
  // kF = kR - baDeltaLength
  // kR = kF + baDeltaLength

  const baDeltaLength = bLength - aLength; // Optimization: max diagonal in graph intersects corner of shorter side.

  let iMaxF = aLength;
  let iMaxR = aLength; // Initialize no changes yet in forward or reverse direction:

  aIndexesF[0] = aStart - 1; // at open start of interval, outside closed start

  aIndexesR[0] = aEnd; // at open end of interval

  if (baDeltaLength % 2 === 0) {
    // The number of changes in paths is 2 * d if length difference is even.
    const dMin = (nChange || baDeltaLength) / 2;
    const dMax = (aLength + bLength) / 2;

    for (let d = 1; d <= dMax; d += 1) {
      iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);

      if (d < dMin) {
        iMaxR = extendPathsR(d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR);
      } else if (
        // If a reverse path overlaps a forward path in the same diagonal,
        // return a division of the index intervals at the middle change.
        extendOverlappablePathsR(
          d,
          aStart,
          aEnd,
          bStart,
          bEnd,
          isCommon,
          aIndexesF,
          iMaxF,
          aIndexesR,
          iMaxR,
          division
        )
      ) {
        return;
      }
    }
  } else {
    // The number of changes in paths is 2 * d - 1 if length difference is odd.
    const dMin = ((nChange || baDeltaLength) + 1) / 2;
    const dMax = (aLength + bLength + 1) / 2; // Unroll first half iteration so loop extends the relevant pairs of paths.
    // Because of invariant that intervals have no common items at start or end,
    // and limitation not to call divide with empty intervals,
    // therefore it cannot be called if a forward path with one change
    // would overlap a reverse path with no changes, even if dMin === 1.

    let d = 1;
    iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);

    for (d += 1; d <= dMax; d += 1) {
      iMaxR = extendPathsR(
        d - 1,
        aStart,
        bStart,
        bR,
        isCommon,
        aIndexesR,
        iMaxR
      );

      if (d < dMin) {
        iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
      } else if (
        // If a forward path overlaps a reverse path in the same diagonal,
        // return a division of the index intervals at the middle change.
        extendOverlappablePathsF(
          d,
          aStart,
          aEnd,
          bStart,
          bEnd,
          isCommon,
          aIndexesF,
          iMaxF,
          aIndexesR,
          iMaxR,
          division
        )
      ) {
        return;
      }
    }
  }
  /* istanbul ignore next */

  throw new Error(
    `${pkg}: no overlap aStart=${aStart} aEnd=${aEnd} bStart=${bStart} bEnd=${bEnd}`
  );
}; // Given index intervals and input function to compare items at indexes,
// return by output function the number of adjacent items and starting indexes
// of each common subsequence. Divide and conquer with only linear space.
//
// The index intervals are half open [start, end) like array slice method.
// DO NOT CALL if start === end, because interval cannot contain common items
// and because divide function will throw the “no overlap” error.

const findSubsequences = (
  nChange,
  aStart,
  aEnd,
  bStart,
  bEnd,
  transposed,
  callbacks,
  aIndexesF,
  aIndexesR,
  division // temporary memory, not input nor output
) => {
  if (bEnd - bStart < aEnd - aStart) {
    // Transpose graph so it has portrait instead of landscape orientation.
    // Always compare shorter to longer sequence for consistency and optimization.
    transposed = !transposed;

    if (transposed && callbacks.length === 1) {
      // Lazily wrap callback functions to swap args if graph is transposed.
      const {foundSubsequence, isCommon} = callbacks[0];
      callbacks[1] = {
        foundSubsequence: (nCommon, bCommon, aCommon) => {
          foundSubsequence(nCommon, aCommon, bCommon);
        },
        isCommon: (bIndex, aIndex) => isCommon(aIndex, bIndex)
      };
    }

    const tStart = aStart;
    const tEnd = aEnd;
    aStart = bStart;
    aEnd = bEnd;
    bStart = tStart;
    bEnd = tEnd;
  }

  const {foundSubsequence, isCommon} = callbacks[transposed ? 1 : 0]; // Divide the index intervals at the middle change.

  divide(
    nChange,
    aStart,
    aEnd,
    bStart,
    bEnd,
    isCommon,
    aIndexesF,
    aIndexesR,
    division
  );
  const {
    nChangePreceding,
    aEndPreceding,
    bEndPreceding,
    nCommonPreceding,
    aCommonPreceding,
    bCommonPreceding,
    nCommonFollowing,
    aCommonFollowing,
    bCommonFollowing,
    nChangeFollowing,
    aStartFollowing,
    bStartFollowing
  } = division; // Unless either index interval is empty, they might contain common items.

  if (aStart < aEndPreceding && bStart < bEndPreceding) {
    // Recursely find and return common subsequences preceding the division.
    findSubsequences(
      nChangePreceding,
      aStart,
      aEndPreceding,
      bStart,
      bEndPreceding,
      transposed,
      callbacks,
      aIndexesF,
      aIndexesR,
      division
    );
  } // Return common subsequences that are adjacent to the middle change.

  if (nCommonPreceding !== 0) {
    foundSubsequence(nCommonPreceding, aCommonPreceding, bCommonPreceding);
  }

  if (nCommonFollowing !== 0) {
    foundSubsequence(nCommonFollowing, aCommonFollowing, bCommonFollowing);
  } // Unless either index interval is empty, they might contain common items.

  if (aStartFollowing < aEnd && bStartFollowing < bEnd) {
    // Recursely find and return common subsequences following the division.
    findSubsequences(
      nChangeFollowing,
      aStartFollowing,
      aEnd,
      bStartFollowing,
      bEnd,
      transposed,
      callbacks,
      aIndexesF,
      aIndexesR,
      division
    );
  }
};

const validateLength = (name, arg) => {
  const type = typeof arg;

  if (type !== 'number') {
    throw new TypeError(`${pkg}: ${name} typeof ${type} is not a number`);
  }

  if (!Number.isSafeInteger(arg)) {
    throw new RangeError(`${pkg}: ${name} value ${arg} is not a safe integer`);
  }

  if (arg < 0) {
    throw new RangeError(`${pkg}: ${name} value ${arg} is a negative integer`);
  }
};

const validateCallback = (name, arg) => {
  const type = typeof arg;

  if (type !== 'function') {
    throw new TypeError(`${pkg}: ${name} typeof ${type} is not a function`);
  }
}; // Compare items in two sequences to find a longest common subsequence.
// Given lengths of sequences and input function to compare items at indexes,
// return by output function the number of adjacent items and starting indexes
// of each common subsequence.

var _default = (aLength, bLength, isCommon, foundSubsequence) => {
  validateLength('aLength', aLength);
  validateLength('bLength', bLength);
  validateCallback('isCommon', isCommon);
  validateCallback('foundSubsequence', foundSubsequence); // Count common items from the start in the forward direction.

  const nCommonF = countCommonItemsF(0, aLength, 0, bLength, isCommon);

  if (nCommonF !== 0) {
    foundSubsequence(nCommonF, 0, 0);
  } // Unless both sequences consist of common items only,
  // find common items in the half-trimmed index intervals.

  if (aLength !== nCommonF || bLength !== nCommonF) {
    // Invariant: intervals do not have common items at the start.
    // The start of an index interval is closed like array slice method.
    const aStart = nCommonF;
    const bStart = nCommonF; // Count common items from the end in the reverse direction.

    const nCommonR = countCommonItemsR(
      aStart,
      aLength - 1,
      bStart,
      bLength - 1,
      isCommon
    ); // Invariant: intervals do not have common items at the end.
    // The end of an index interval is open like array slice method.

    const aEnd = aLength - nCommonR;
    const bEnd = bLength - nCommonR; // Unless one sequence consists of common items only,
    // therefore the other trimmed index interval consists of changes only,
    // find common items in the trimmed index intervals.

    const nCommonFR = nCommonF + nCommonR;

    if (aLength !== nCommonFR && bLength !== nCommonFR) {
      const nChange = 0; // number of change items is not yet known

      const transposed = false; // call the original unwrapped functions

      const callbacks = [
        {
          foundSubsequence,
          isCommon
        }
      ]; // Indexes in sequence a of last points in furthest reaching paths
      // from outside the start at top left in the forward direction:

      const aIndexesF = [NOT_YET_SET]; // from the end at bottom right in the reverse direction:

      const aIndexesR = [NOT_YET_SET]; // Initialize one object as output of all calls to divide function.

      const division = {
        aCommonFollowing: NOT_YET_SET,
        aCommonPreceding: NOT_YET_SET,
        aEndPreceding: NOT_YET_SET,
        aStartFollowing: NOT_YET_SET,
        bCommonFollowing: NOT_YET_SET,
        bCommonPreceding: NOT_YET_SET,
        bEndPreceding: NOT_YET_SET,
        bStartFollowing: NOT_YET_SET,
        nChangeFollowing: NOT_YET_SET,
        nChangePreceding: NOT_YET_SET,
        nCommonFollowing: NOT_YET_SET,
        nCommonPreceding: NOT_YET_SET
      }; // Find and return common subsequences in the trimmed index intervals.

      findSubsequences(
        nChange,
        aStart,
        aEnd,
        bStart,
        bEnd,
        transposed,
        callbacks,
        aIndexesF,
        aIndexesR,
        division
      );
    }

    if (nCommonR !== 0) {
      foundSubsequence(nCommonR, aEnd, bEnd);
    }
  }
};

exports.default = _default;