Int64.js 7.86 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
//     Int64.js
//
//     Copyright (c) 2012 Robert Kieffer
//     MIT License - http://opensource.org/licenses/mit-license.php

/**
 * Support for handling 64-bit int numbers in Javascript (node.js)
 *
 * JS Numbers are IEEE-754 binary double-precision floats, which limits the
 * range of values that can be represented with integer precision to:
 *
 * 2^^53 <= N <= 2^53
 *
 * Int64 objects wrap a node Buffer that holds the 8-bytes of int64 data.  These
 * objects operate directly on the buffer which means that if they are created
 * using an existing buffer then setting the value will modify the Buffer, and
 * vice-versa.
 *
 * Internal Representation
 *
 * The internal buffer format is Big Endian.  I.e. the most-significant byte is
 * at buffer[0], the least-significant at buffer[7].  For the purposes of
 * converting to/from JS native numbers, the value is assumed to be a signed
 * integer stored in 2's complement form.
 *
 * For details about IEEE-754 see:
 * http://en.wikipedia.org/wiki/Double_precision_floating-point_format
 */

// Useful masks and values for bit twiddling
var MASK31 =  0x7fffffff, VAL31 = 0x80000000;
var MASK32 =  0xffffffff, VAL32 = 0x100000000;

// Map for converting hex octets to strings
var _HEX = [];
for (var i = 0; i < 256; i++) {
  _HEX[i] = (i > 0xF ? '' : '0') + i.toString(16);
}

//
// Int64
//

/**
 * Constructor accepts any of the following argument types:
 *
 * new Int64(buffer[, offset=0]) - Existing Buffer with byte offset
 * new Int64(Uint8Array[, offset=0]) - Existing Uint8Array with a byte offset
 * new Int64(string)             - Hex string (throws if n is outside int64 range)
 * new Int64(number)             - Number (throws if n is outside int64 range)
 * new Int64(hi, lo)             - Raw bits as two 32-bit values
 */
var Int64 = module.exports = function(a1, a2) {
  if (a1 instanceof Buffer) {
    this.buffer = a1;
    this.offset = a2 || 0;
  } else if (Object.prototype.toString.call(a1) == '[object Uint8Array]') {
    // Under Browserify, Buffers can extend Uint8Arrays rather than an
    // instance of Buffer. We could assume the passed in Uint8Array is actually
    // a buffer but that won't handle the case where a raw Uint8Array is passed
    // in. We construct a new Buffer just in case.
    this.buffer = new Buffer(a1);
    this.offset = a2 || 0;
  } else {
    this.buffer = this.buffer || new Buffer(8);
    this.offset = 0;
    this.setValue.apply(this, arguments);
  }
};


// Max integer value that JS can accurately represent
Int64.MAX_INT = Math.pow(2, 53);

// Min integer value that JS can accurately represent
Int64.MIN_INT = -Math.pow(2, 53);

Int64.prototype = {

  constructor: Int64,

  /**
   * Do in-place 2's compliment.  See
   * http://en.wikipedia.org/wiki/Two's_complement
   */
  _2scomp: function() {
    var b = this.buffer, o = this.offset, carry = 1;
    for (var i = o + 7; i >= o; i--) {
      var v = (b[i] ^ 0xff) + carry;
      b[i] = v & 0xff;
      carry = v >> 8;
    }
  },

  /**
   * Set the value. Takes any of the following arguments:
   *
   * setValue(string) - A hexidecimal string
   * setValue(number) - Number (throws if n is outside int64 range)
   * setValue(hi, lo) - Raw bits as two 32-bit values
   */
  setValue: function(hi, lo) {
    var negate = false;
    if (arguments.length == 1) {
      if (typeof(hi) == 'number') {
        // Simplify bitfield retrieval by using abs() value.  We restore sign
        // later
        negate = hi < 0;
        hi = Math.abs(hi);
        lo = hi % VAL32;
        hi = hi / VAL32;
        if (hi > VAL32) throw new RangeError(hi  + ' is outside Int64 range');
        hi = hi | 0;
      } else if (typeof(hi) == 'string') {
        hi = (hi + '').replace(/^0x/, '');
        lo = hi.substr(-8);
        hi = hi.length > 8 ? hi.substr(0, hi.length - 8) : '';
        hi = parseInt(hi, 16);
        lo = parseInt(lo, 16);
      } else {
        throw new Error(hi + ' must be a Number or String');
      }
    }

    // Technically we should throw if hi or lo is outside int32 range here, but
    // it's not worth the effort. Anything past the 32'nd bit is ignored.

    // Copy bytes to buffer
    var b = this.buffer, o = this.offset;
    for (var i = 7; i >= 0; i--) {
      b[o+i] = lo & 0xff;
      lo = i == 4 ? hi : lo >>> 8;
    }

    // Restore sign of passed argument
    if (negate) this._2scomp();
  },

  /**
   * Convert to a native JS number.
   *
   * WARNING: Do not expect this value to be accurate to integer precision for
   * large (positive or negative) numbers!
   *
   * @param allowImprecise If true, no check is performed to verify the
   * returned value is accurate to integer precision.  If false, imprecise
   * numbers (very large positive or negative numbers) will be forced to +/-
   * Infinity.
   */
  toNumber: function(allowImprecise) {
    var b = this.buffer, o = this.offset;

    // Running sum of octets, doing a 2's complement
    var negate = b[o] & 0x80, x = 0, carry = 1;
    for (var i = 7, m = 1; i >= 0; i--, m *= 256) {
      var v = b[o+i];

      // 2's complement for negative numbers
      if (negate) {
        v = (v ^ 0xff) + carry;
        carry = v >> 8;
        v = v & 0xff;
      }

      x += v * m;
    }

    // Return Infinity if we've lost integer precision
    if (!allowImprecise && x >= Int64.MAX_INT) {
      return negate ? -Infinity : Infinity;
    }

    return negate ? -x : x;
  },

  /**
   * Convert to a JS Number. Returns +/-Infinity for values that can't be
   * represented to integer precision.
   */
  valueOf: function() {
    return this.toNumber(false);
  },

  /**
   * Return string value
   *
   * @param radix Just like Number#toString()'s radix
   */
  toString: function(radix) {
    return this.valueOf().toString(radix || 10);
  },

  /**
   * Return a string showing the buffer octets, with MSB on the left.
   *
   * @param sep separator string. default is '' (empty string)
   */
  toOctetString: function(sep) {
    var out = new Array(8);
    var b = this.buffer, o = this.offset;
    for (var i = 0; i < 8; i++) {
      out[i] = _HEX[b[o+i]];
    }
    return out.join(sep || '');
  },

  /**
   * Returns the int64's 8 bytes in a buffer.
   *
   * @param {bool} [rawBuffer=false]  If no offset and this is true, return the internal buffer.  Should only be used if
   *                                  you're discarding the Int64 afterwards, as it breaks encapsulation.
   */
  toBuffer: function(rawBuffer) {
    if (rawBuffer && this.offset === 0) return this.buffer;

    var out = new Buffer(8);
    this.buffer.copy(out, 0, this.offset, this.offset + 8);
    return out;
  },

  /**
   * Copy 8 bytes of int64 into target buffer at target offset.
   *
   * @param {Buffer} targetBuffer       Buffer to copy into.
   * @param {number} [targetOffset=0]   Offset into target buffer.
   */
  copy: function(targetBuffer, targetOffset) {
    this.buffer.copy(targetBuffer, targetOffset || 0, this.offset, this.offset + 8);
  },

  /**
   * Returns a number indicating whether this comes before or after or is the
   * same as the other in sort order.
   *
   * @param {Int64} other  Other Int64 to compare.
   */
  compare: function(other) {

    // If sign bits differ ...
    if ((this.buffer[this.offset] & 0x80) != (other.buffer[other.offset] & 0x80)) {
      return other.buffer[other.offset] - this.buffer[this.offset];
    }

    // otherwise, compare bytes lexicographically
    for (var i = 0; i < 8; i++) {
      if (this.buffer[this.offset+i] !== other.buffer[other.offset+i]) {
        return this.buffer[this.offset+i] - other.buffer[other.offset+i];
      }
    }
    return 0;
  },

  /**
   * Returns a boolean indicating if this integer is equal to other.
   *
   * @param {Int64} other  Other Int64 to compare.
   */
  equals: function(other) {
    return this.compare(other) === 0;
  },

  /**
   * Pretty output in console.log
   */
  inspect: function() {
    return '[Int64 value:' + this + ' octets:' + this.toOctetString(' ') + ']';
  }
};