/** * Copyright (c) 2013-present, Facebook, Inc. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. * * * @typechecks */ 'use strict'; function _defineProperty(obj, key, value) { if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; } var invariant = require("./invariant"); var parent = function parent(node) { return Math.floor(node / 2); }; var Int32Array = global.Int32Array || function (size) { var xs = []; for (var i = size - 1; i >= 0; --i) { xs[i] = 0; } return xs; }; /** * Computes the next power of 2 after or equal to x. */ function ceilLog2(x) { var y = 1; while (y < x) { y *= 2; } return y; } /** * A prefix interval tree stores an numeric array and the partial sums of that * array. It is optimized for updating the values of the array without * recomputing all of the partial sums. * * - O(ln n) update * - O(1) lookup * - O(ln n) compute a partial sum * - O(n) space * * Note that the sequence of partial sums is one longer than the array, so that * the first partial sum is always 0, and the last partial sum is the sum of the * entire array. */ var PrefixIntervalTree = /*#__PURE__*/ function () { /** * Number of elements in the array */ /** * Half the size of the heap. It is also the number of non-leaf nodes, and the * index of the first element in the heap. Always a power of 2. */ /** * Binary heap */ function PrefixIntervalTree(xs) { _defineProperty(this, "_size", void 0); _defineProperty(this, "_half", void 0); _defineProperty(this, "_heap", void 0); this._size = xs.length; this._half = ceilLog2(this._size); this._heap = new Int32Array(2 * this._half); var i; for (i = 0; i < this._size; ++i) { this._heap[this._half + i] = xs[i]; } for (i = this._half - 1; i > 0; --i) { this._heap[i] = this._heap[2 * i] + this._heap[2 * i + 1]; } } PrefixIntervalTree.uniform = function uniform(size, initialValue) { var xs = []; for (var _i = size - 1; _i >= 0; --_i) { xs[_i] = initialValue; } return new PrefixIntervalTree(xs); }; PrefixIntervalTree.empty = function empty(size) { return PrefixIntervalTree.uniform(size, 0); }; var _proto = PrefixIntervalTree.prototype; _proto.set = function set(index, value) { !(0 <= index && index < this._size) ? process.env.NODE_ENV !== "production" ? invariant(false, 'Index out of range %s', index) : invariant(false) : void 0; var node = this._half + index; this._heap[node] = value; node = parent(node); for (; node !== 0; node = parent(node)) { this._heap[node] = this._heap[2 * node] + this._heap[2 * node + 1]; } }; _proto.get = function get(index) { !(0 <= index && index < this._size) ? process.env.NODE_ENV !== "production" ? invariant(false, 'Index out of range %s', index) : invariant(false) : void 0; var node = this._half + index; return this._heap[node]; }; _proto.getSize = function getSize() { return this._size; }; /** * Returns the sum get(0) + get(1) + ... + get(end - 1). */ _proto.sumUntil = function sumUntil(end) { !(0 <= end && end < this._size + 1) ? process.env.NODE_ENV !== "production" ? invariant(false, 'Index out of range %s', end) : invariant(false) : void 0; if (end === 0) { return 0; } var node = this._half + end - 1; var sum = this._heap[node]; for (; node !== 1; node = parent(node)) { if (node % 2 === 1) { sum += this._heap[node - 1]; } } return sum; }; /** * Returns the sum get(0) + get(1) + ... + get(inclusiveEnd). */ _proto.sumTo = function sumTo(inclusiveEnd) { !(0 <= inclusiveEnd && inclusiveEnd < this._size) ? process.env.NODE_ENV !== "production" ? invariant(false, 'Index out of range %s', inclusiveEnd) : invariant(false) : void 0; return this.sumUntil(inclusiveEnd + 1); }; /** * Returns the sum get(begin) + get(begin + 1) + ... + get(end - 1). */ _proto.sum = function sum(begin, end) { !(begin <= end) ? process.env.NODE_ENV !== "production" ? invariant(false, 'Begin must precede end') : invariant(false) : void 0; return this.sumUntil(end) - this.sumUntil(begin); }; /** * Returns the smallest i such that 0 <= i <= size and sumUntil(i) <= t, or * -1 if no such i exists. */ _proto.greatestLowerBound = function greatestLowerBound(t) { if (t < 0) { return -1; } var node = 1; if (this._heap[node] <= t) { return this._size; } while (node < this._half) { var leftSum = this._heap[2 * node]; if (t < leftSum) { node = 2 * node; } else { node = 2 * node + 1; t -= leftSum; } } return node - this._half; }; /** * Returns the smallest i such that 0 <= i <= size and sumUntil(i) < t, or * -1 if no such i exists. */ _proto.greatestStrictLowerBound = function greatestStrictLowerBound(t) { if (t <= 0) { return -1; } var node = 1; if (this._heap[node] < t) { return this._size; } while (node < this._half) { var leftSum = this._heap[2 * node]; if (t <= leftSum) { node = 2 * node; } else { node = 2 * node + 1; t -= leftSum; } } return node - this._half; }; /** * Returns the smallest i such that 0 <= i <= size and t <= sumUntil(i), or * size + 1 if no such i exists. */ _proto.leastUpperBound = function leastUpperBound(t) { return this.greatestStrictLowerBound(t) + 1; }; /** * Returns the smallest i such that 0 <= i <= size and t < sumUntil(i), or * size + 1 if no such i exists. */ _proto.leastStrictUpperBound = function leastStrictUpperBound(t) { return this.greatestLowerBound(t) + 1; }; return PrefixIntervalTree; }(); module.exports = PrefixIntervalTree;