/** * Copyright (c) 2013-present, Facebook, Inc. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. * * @providesModule PrefixIntervalTree * @flow * @typechecks */ 'use strict'; const invariant = require("./invariant"); const parent = node => Math.floor(node / 2); const Int32Array = global.Int32Array || function (size: number): Array { const xs = []; for (let i = size - 1; i >= 0; --i) { xs[i] = 0; } return xs; }; /** * Computes the next power of 2 after or equal to x. */ function ceilLog2(x: number): number { let y = 1; while (y < x) { y *= 2; } return y; } /** * A prefix interval tree stores an numeric array and the partial sums of that * array. It is optimized for updating the values of the array without * recomputing all of the partial sums. * * - O(ln n) update * - O(1) lookup * - O(ln n) compute a partial sum * - O(n) space * * Note that the sequence of partial sums is one longer than the array, so that * the first partial sum is always 0, and the last partial sum is the sum of the * entire array. */ class PrefixIntervalTree { /** * Number of elements in the array */ _size: number; /** * Half the size of the heap. It is also the number of non-leaf nodes, and the * index of the first element in the heap. Always a power of 2. */ _half: number; /** * Binary heap */ _heap: Int32Array; constructor(xs: Array) { this._size = xs.length; this._half = ceilLog2(this._size); this._heap = new Int32Array(2 * this._half); let i; for (i = 0; i < this._size; ++i) { this._heap[this._half + i] = xs[i]; } for (i = this._half - 1; i > 0; --i) { this._heap[i] = this._heap[2 * i] + this._heap[2 * i + 1]; } } static uniform(size: number, initialValue: number): PrefixIntervalTree { const xs = []; for (let i = size - 1; i >= 0; --i) { xs[i] = initialValue; } return new PrefixIntervalTree(xs); } static empty(size: number): PrefixIntervalTree { return PrefixIntervalTree.uniform(size, 0); } set(index: number, value: number): void { invariant(0 <= index && index < this._size, 'Index out of range %s', index); let node = this._half + index; this._heap[node] = value; node = parent(node); for (; node !== 0; node = parent(node)) { this._heap[node] = this._heap[2 * node] + this._heap[2 * node + 1]; } } get(index: number): number { invariant(0 <= index && index < this._size, 'Index out of range %s', index); const node = this._half + index; return this._heap[node]; } getSize(): number { return this._size; } /** * Returns the sum get(0) + get(1) + ... + get(end - 1). */ sumUntil(end: number): number { invariant(0 <= end && end < this._size + 1, 'Index out of range %s', end); if (end === 0) { return 0; } let node = this._half + end - 1; let sum = this._heap[node]; for (; node !== 1; node = parent(node)) { if (node % 2 === 1) { sum += this._heap[node - 1]; } } return sum; } /** * Returns the sum get(0) + get(1) + ... + get(inclusiveEnd). */ sumTo(inclusiveEnd: number): number { invariant(0 <= inclusiveEnd && inclusiveEnd < this._size, 'Index out of range %s', inclusiveEnd); return this.sumUntil(inclusiveEnd + 1); } /** * Returns the sum get(begin) + get(begin + 1) + ... + get(end - 1). */ sum(begin: number, end: number): number { invariant(begin <= end, 'Begin must precede end'); return this.sumUntil(end) - this.sumUntil(begin); } /** * Returns the smallest i such that 0 <= i <= size and sumUntil(i) <= t, or * -1 if no such i exists. */ greatestLowerBound(t: number): number { if (t < 0) { return -1; } let node = 1; if (this._heap[node] <= t) { return this._size; } while (node < this._half) { const leftSum = this._heap[2 * node]; if (t < leftSum) { node = 2 * node; } else { node = 2 * node + 1; t -= leftSum; } } return node - this._half; } /** * Returns the smallest i such that 0 <= i <= size and sumUntil(i) < t, or * -1 if no such i exists. */ greatestStrictLowerBound(t: number): number { if (t <= 0) { return -1; } let node = 1; if (this._heap[node] < t) { return this._size; } while (node < this._half) { const leftSum = this._heap[2 * node]; if (t <= leftSum) { node = 2 * node; } else { node = 2 * node + 1; t -= leftSum; } } return node - this._half; } /** * Returns the smallest i such that 0 <= i <= size and t <= sumUntil(i), or * size + 1 if no such i exists. */ leastUpperBound(t: number): number { return this.greatestStrictLowerBound(t) + 1; } /** * Returns the smallest i such that 0 <= i <= size and t < sumUntil(i), or * size + 1 if no such i exists. */ leastStrictUpperBound(t: number): number { return this.greatestLowerBound(t) + 1; } } module.exports = PrefixIntervalTree;