/** @license React v0.17.0 * scheduler.development.js * * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ 'use strict'; if (process.env.NODE_ENV !== "production") { (function() { 'use strict'; Object.defineProperty(exports, '__esModule', { value: true }); var enableSchedulerDebugging = false; var enableIsInputPending = false; var enableMessageLoopImplementation = true; var enableProfiling = true; // works by scheduling a requestAnimationFrame, storing the time for the start // of the frame, then scheduling a postMessage which gets scheduled after paint. // Within the postMessage handler do as much work as possible until time + frame // rate. By separating the idle call into a separate event tick we ensure that // layout, paint and other browser work is counted against the available time. // The frame rate is dynamically adjusted. var requestHostCallback; var requestHostTimeout; var cancelHostTimeout; var shouldYieldToHost; var requestPaint; if ( // If Scheduler runs in a non-DOM environment, it falls back to a naive // implementation using setTimeout. typeof window === 'undefined' || // Check if MessageChannel is supported, too. typeof MessageChannel !== 'function') { // If this accidentally gets imported in a non-browser environment, e.g. JavaScriptCore, // fallback to a naive implementation. var _callback = null; var _timeoutID = null; var _flushCallback = function () { if (_callback !== null) { try { var currentTime = exports.unstable_now(); var hasRemainingTime = true; _callback(hasRemainingTime, currentTime); _callback = null; } catch (e) { setTimeout(_flushCallback, 0); throw e; } } }; var initialTime = Date.now(); exports.unstable_now = function () { return Date.now() - initialTime; }; requestHostCallback = function (cb) { if (_callback !== null) { // Protect against re-entrancy. setTimeout(requestHostCallback, 0, cb); } else { _callback = cb; setTimeout(_flushCallback, 0); } }; requestHostTimeout = function (cb, ms) { _timeoutID = setTimeout(cb, ms); }; cancelHostTimeout = function () { clearTimeout(_timeoutID); }; shouldYieldToHost = function () { return false; }; requestPaint = exports.unstable_forceFrameRate = function () {}; } else { // Capture local references to native APIs, in case a polyfill overrides them. var performance = window.performance; var _Date = window.Date; var _setTimeout = window.setTimeout; var _clearTimeout = window.clearTimeout; var requestAnimationFrame = window.requestAnimationFrame; var cancelAnimationFrame = window.cancelAnimationFrame; if (typeof console !== 'undefined') { // TODO: Remove fb.me link if (typeof requestAnimationFrame !== 'function') { console.error("This browser doesn't support requestAnimationFrame. " + 'Make sure that you load a ' + 'polyfill in older browsers. https://fb.me/react-polyfills'); } if (typeof cancelAnimationFrame !== 'function') { console.error("This browser doesn't support cancelAnimationFrame. " + 'Make sure that you load a ' + 'polyfill in older browsers. https://fb.me/react-polyfills'); } } if (typeof performance === 'object' && typeof performance.now === 'function') { exports.unstable_now = function () { return performance.now(); }; } else { var _initialTime = _Date.now(); exports.unstable_now = function () { return _Date.now() - _initialTime; }; } var isRAFLoopRunning = false; var isMessageLoopRunning = false; var scheduledHostCallback = null; var rAFTimeoutID = -1; var taskTimeoutID = -1; var frameLength = enableMessageLoopImplementation ? // We won't attempt to align with the vsync. Instead we'll yield multiple // times per frame, often enough to keep it responsive even at really // high frame rates > 120. 5 : // Use a heuristic to measure the frame rate and yield at the end of the // frame. We start out assuming that we run at 30fps but then the // heuristic tracking will adjust this value to a faster fps if we get // more frequent animation frames. 33.33; var prevRAFTime = -1; var prevRAFInterval = -1; var frameDeadline = 0; var fpsLocked = false; // TODO: Make this configurable // TODO: Adjust this based on priority? var maxFrameLength = 300; var needsPaint = false; if (enableIsInputPending && navigator !== undefined && navigator.scheduling !== undefined && navigator.scheduling.isInputPending !== undefined) { var scheduling = navigator.scheduling; shouldYieldToHost = function () { var currentTime = exports.unstable_now(); if (currentTime >= frameDeadline) { // There's no time left in the frame. We may want to yield control of // the main thread, so the browser can perform high priority tasks. The // main ones are painting and user input. If there's a pending paint or // a pending input, then we should yield. But if there's neither, then // we can yield less often while remaining responsive. We'll eventually // yield regardless, since there could be a pending paint that wasn't // accompanied by a call to `requestPaint`, or other main thread tasks // like network events. if (needsPaint || scheduling.isInputPending()) { // There is either a pending paint or a pending input. return true; } // There's no pending input. Only yield if we've reached the max // frame length. return currentTime >= frameDeadline + maxFrameLength; } else { // There's still time left in the frame. return false; } }; requestPaint = function () { needsPaint = true; }; } else { // `isInputPending` is not available. Since we have no way of knowing if // there's pending input, always yield at the end of the frame. shouldYieldToHost = function () { return exports.unstable_now() >= frameDeadline; }; // Since we yield every frame regardless, `requestPaint` has no effect. requestPaint = function () {}; } exports.unstable_forceFrameRate = function (fps) { if (fps < 0 || fps > 125) { console.error('forceFrameRate takes a positive int between 0 and 125, ' + 'forcing framerates higher than 125 fps is not unsupported'); return; } if (fps > 0) { frameLength = Math.floor(1000 / fps); fpsLocked = true; } else { // reset the framerate frameLength = 33.33; fpsLocked = false; } }; var performWorkUntilDeadline = function () { if (enableMessageLoopImplementation) { if (scheduledHostCallback !== null) { var currentTime = exports.unstable_now(); // Yield after `frameLength` ms, regardless of where we are in the vsync // cycle. This means there's always time remaining at the beginning of // the message event. frameDeadline = currentTime + frameLength; var hasTimeRemaining = true; try { var hasMoreWork = scheduledHostCallback(hasTimeRemaining, currentTime); if (!hasMoreWork) { isMessageLoopRunning = false; scheduledHostCallback = null; } else { // If there's more work, schedule the next message event at the end // of the preceding one. port.postMessage(null); } } catch (error) { // If a scheduler task throws, exit the current browser task so the // error can be observed. port.postMessage(null); throw error; } } else { isMessageLoopRunning = false; } // Yielding to the browser will give it a chance to paint, so we can // reset this. needsPaint = false; } else { if (scheduledHostCallback !== null) { var _currentTime = exports.unstable_now(); var _hasTimeRemaining = frameDeadline - _currentTime > 0; try { var _hasMoreWork = scheduledHostCallback(_hasTimeRemaining, _currentTime); if (!_hasMoreWork) { scheduledHostCallback = null; } } catch (error) { // If a scheduler task throws, exit the current browser task so the // error can be observed, and post a new task as soon as possible // so we can continue where we left off. port.postMessage(null); throw error; } } // Yielding to the browser will give it a chance to paint, so we can // reset this. needsPaint = false; } }; var channel = new MessageChannel(); var port = channel.port2; channel.port1.onmessage = performWorkUntilDeadline; var onAnimationFrame = function (rAFTime) { if (scheduledHostCallback === null) { // No scheduled work. Exit. prevRAFTime = -1; prevRAFInterval = -1; isRAFLoopRunning = false; return; } // Eagerly schedule the next animation callback at the beginning of the // frame. If the scheduler queue is not empty at the end of the frame, it // will continue flushing inside that callback. If the queue *is* empty, // then it will exit immediately. Posting the callback at the start of the // frame ensures it's fired within the earliest possible frame. If we // waited until the end of the frame to post the callback, we risk the // browser skipping a frame and not firing the callback until the frame // after that. isRAFLoopRunning = true; requestAnimationFrame(function (nextRAFTime) { _clearTimeout(rAFTimeoutID); onAnimationFrame(nextRAFTime); }); // requestAnimationFrame is throttled when the tab is backgrounded. We // don't want to stop working entirely. So we'll fallback to a timeout loop. // TODO: Need a better heuristic for backgrounded work. var onTimeout = function () { frameDeadline = exports.unstable_now() + frameLength / 2; performWorkUntilDeadline(); rAFTimeoutID = _setTimeout(onTimeout, frameLength * 3); }; rAFTimeoutID = _setTimeout(onTimeout, frameLength * 3); if (prevRAFTime !== -1 && // Make sure this rAF time is different from the previous one. This check // could fail if two rAFs fire in the same frame. rAFTime - prevRAFTime > 0.1) { var rAFInterval = rAFTime - prevRAFTime; if (!fpsLocked && prevRAFInterval !== -1) { // We've observed two consecutive frame intervals. We'll use this to // dynamically adjust the frame rate. // // If one frame goes long, then the next one can be short to catch up. // If two frames are short in a row, then that's an indication that we // actually have a higher frame rate than what we're currently // optimizing. For example, if we're running on 120hz display or 90hz VR // display. Take the max of the two in case one of them was an anomaly // due to missed frame deadlines. if (rAFInterval < frameLength && prevRAFInterval < frameLength) { frameLength = rAFInterval < prevRAFInterval ? prevRAFInterval : rAFInterval; if (frameLength < 8.33) { // Defensive coding. We don't support higher frame rates than 120hz. // If the calculated frame length gets lower than 8, it is probably // a bug. frameLength = 8.33; } } } prevRAFInterval = rAFInterval; } prevRAFTime = rAFTime; frameDeadline = rAFTime + frameLength; // We use the postMessage trick to defer idle work until after the repaint. port.postMessage(null); }; requestHostCallback = function (callback) { scheduledHostCallback = callback; if (enableMessageLoopImplementation) { if (!isMessageLoopRunning) { isMessageLoopRunning = true; port.postMessage(null); } } else { if (!isRAFLoopRunning) { // Start a rAF loop. isRAFLoopRunning = true; requestAnimationFrame(function (rAFTime) { onAnimationFrame(rAFTime); }); } } }; requestHostTimeout = function (callback, ms) { taskTimeoutID = _setTimeout(function () { callback(exports.unstable_now()); }, ms); }; cancelHostTimeout = function () { _clearTimeout(taskTimeoutID); taskTimeoutID = -1; }; } function push(heap, node) { var index = heap.length; heap.push(node); siftUp(heap, node, index); } function peek(heap) { var first = heap[0]; return first === undefined ? null : first; } function pop(heap) { var first = heap[0]; if (first !== undefined) { var last = heap.pop(); if (last !== first) { heap[0] = last; siftDown(heap, last, 0); } return first; } else { return null; } } function siftUp(heap, node, i) { var index = i; while (true) { var parentIndex = Math.floor((index - 1) / 2); var parent = heap[parentIndex]; if (parent !== undefined && compare(parent, node) > 0) { // The parent is larger. Swap positions. heap[parentIndex] = node; heap[index] = parent; index = parentIndex; } else { // The parent is smaller. Exit. return; } } } function siftDown(heap, node, i) { var index = i; var length = heap.length; while (index < length) { var leftIndex = (index + 1) * 2 - 1; var left = heap[leftIndex]; var rightIndex = leftIndex + 1; var right = heap[rightIndex]; // If the left or right node is smaller, swap with the smaller of those. if (left !== undefined && compare(left, node) < 0) { if (right !== undefined && compare(right, left) < 0) { heap[index] = right; heap[rightIndex] = node; index = rightIndex; } else { heap[index] = left; heap[leftIndex] = node; index = leftIndex; } } else if (right !== undefined && compare(right, node) < 0) { heap[index] = right; heap[rightIndex] = node; index = rightIndex; } else { // Neither child is smaller. Exit. return; } } } function compare(a, b) { // Compare sort index first, then task id. var diff = a.sortIndex - b.sortIndex; return diff !== 0 ? diff : a.id - b.id; } // TODO: Use symbols? var NoPriority = 0; var ImmediatePriority = 1; var UserBlockingPriority = 2; var NormalPriority = 3; var LowPriority = 4; var IdlePriority = 5; var runIdCounter = 0; var mainThreadIdCounter = 0; var profilingStateSize = 4; var sharedProfilingBuffer = enableProfiling ? // $FlowFixMe Flow doesn't know about SharedArrayBuffer typeof SharedArrayBuffer === 'function' ? new SharedArrayBuffer(profilingStateSize * Int32Array.BYTES_PER_ELEMENT) : // $FlowFixMe Flow doesn't know about ArrayBuffer typeof ArrayBuffer === 'function' ? new ArrayBuffer(profilingStateSize * Int32Array.BYTES_PER_ELEMENT) : null // Don't crash the init path on IE9 : null; var profilingState = enableProfiling && sharedProfilingBuffer !== null ? new Int32Array(sharedProfilingBuffer) : []; // We can't read this but it helps save bytes for null checks var PRIORITY = 0; var CURRENT_TASK_ID = 1; var CURRENT_RUN_ID = 2; var QUEUE_SIZE = 3; if (enableProfiling) { profilingState[PRIORITY] = NoPriority; // This is maintained with a counter, because the size of the priority queue // array might include canceled tasks. profilingState[QUEUE_SIZE] = 0; profilingState[CURRENT_TASK_ID] = 0; } // Bytes per element is 4 var INITIAL_EVENT_LOG_SIZE = 131072; var MAX_EVENT_LOG_SIZE = 524288; // Equivalent to 2 megabytes var eventLogSize = 0; var eventLogBuffer = null; var eventLog = null; var eventLogIndex = 0; var TaskStartEvent = 1; var TaskCompleteEvent = 2; var TaskErrorEvent = 3; var TaskCancelEvent = 4; var TaskRunEvent = 5; var TaskYieldEvent = 6; var SchedulerSuspendEvent = 7; var SchedulerResumeEvent = 8; function logEvent(entries) { if (eventLog !== null) { var offset = eventLogIndex; eventLogIndex += entries.length; if (eventLogIndex + 1 > eventLogSize) { eventLogSize *= 2; if (eventLogSize > MAX_EVENT_LOG_SIZE) { console.error("Scheduler Profiling: Event log exceeded maximum size. Don't " + 'forget to call `stopLoggingProfilingEvents()`.'); stopLoggingProfilingEvents(); return; } var newEventLog = new Int32Array(eventLogSize * 4); newEventLog.set(eventLog); eventLogBuffer = newEventLog.buffer; eventLog = newEventLog; } eventLog.set(entries, offset); } } function startLoggingProfilingEvents() { eventLogSize = INITIAL_EVENT_LOG_SIZE; eventLogBuffer = new ArrayBuffer(eventLogSize * 4); eventLog = new Int32Array(eventLogBuffer); eventLogIndex = 0; } function stopLoggingProfilingEvents() { var buffer = eventLogBuffer; eventLogSize = 0; eventLogBuffer = null; eventLog = null; eventLogIndex = 0; return buffer; } function markTaskStart(task, ms) { if (enableProfiling) { profilingState[QUEUE_SIZE]++; if (eventLog !== null) { // performance.now returns a float, representing milliseconds. When the // event is logged, it's coerced to an int. Convert to microseconds to // maintain extra degrees of precision. logEvent([TaskStartEvent, ms * 1000, task.id, task.priorityLevel]); } } } function markTaskCompleted(task, ms) { if (enableProfiling) { profilingState[PRIORITY] = NoPriority; profilingState[CURRENT_TASK_ID] = 0; profilingState[QUEUE_SIZE]--; if (eventLog !== null) { logEvent([TaskCompleteEvent, ms * 1000, task.id]); } } } function markTaskCanceled(task, ms) { if (enableProfiling) { profilingState[QUEUE_SIZE]--; if (eventLog !== null) { logEvent([TaskCancelEvent, ms * 1000, task.id]); } } } function markTaskErrored(task, ms) { if (enableProfiling) { profilingState[PRIORITY] = NoPriority; profilingState[CURRENT_TASK_ID] = 0; profilingState[QUEUE_SIZE]--; if (eventLog !== null) { logEvent([TaskErrorEvent, ms * 1000, task.id]); } } } function markTaskRun(task, ms) { if (enableProfiling) { runIdCounter++; profilingState[PRIORITY] = task.priorityLevel; profilingState[CURRENT_TASK_ID] = task.id; profilingState[CURRENT_RUN_ID] = runIdCounter; if (eventLog !== null) { logEvent([TaskRunEvent, ms * 1000, task.id, runIdCounter]); } } } function markTaskYield(task, ms) { if (enableProfiling) { profilingState[PRIORITY] = NoPriority; profilingState[CURRENT_TASK_ID] = 0; profilingState[CURRENT_RUN_ID] = 0; if (eventLog !== null) { logEvent([TaskYieldEvent, ms * 1000, task.id, runIdCounter]); } } } function markSchedulerSuspended(ms) { if (enableProfiling) { mainThreadIdCounter++; if (eventLog !== null) { logEvent([SchedulerSuspendEvent, ms * 1000, mainThreadIdCounter]); } } } function markSchedulerUnsuspended(ms) { if (enableProfiling) { if (eventLog !== null) { logEvent([SchedulerResumeEvent, ms * 1000, mainThreadIdCounter]); } } } /* eslint-disable no-var */ // Math.pow(2, 30) - 1 // 0b111111111111111111111111111111 var maxSigned31BitInt = 1073741823; // Times out immediately var IMMEDIATE_PRIORITY_TIMEOUT = -1; // Eventually times out var USER_BLOCKING_PRIORITY = 250; var NORMAL_PRIORITY_TIMEOUT = 5000; var LOW_PRIORITY_TIMEOUT = 10000; // Never times out var IDLE_PRIORITY = maxSigned31BitInt; // Tasks are stored on a min heap var taskQueue = []; var timerQueue = []; // Incrementing id counter. Used to maintain insertion order. var taskIdCounter = 1; // Pausing the scheduler is useful for debugging. var isSchedulerPaused = false; var currentTask = null; var currentPriorityLevel = NormalPriority; // This is set while performing work, to prevent re-entrancy. var isPerformingWork = false; var isHostCallbackScheduled = false; var isHostTimeoutScheduled = false; function advanceTimers(currentTime) { // Check for tasks that are no longer delayed and add them to the queue. var timer = peek(timerQueue); while (timer !== null) { if (timer.callback === null) { // Timer was cancelled. pop(timerQueue); } else if (timer.startTime <= currentTime) { // Timer fired. Transfer to the task queue. pop(timerQueue); timer.sortIndex = timer.expirationTime; push(taskQueue, timer); if (enableProfiling) { markTaskStart(timer, currentTime); timer.isQueued = true; } } else { // Remaining timers are pending. return; } timer = peek(timerQueue); } } function handleTimeout(currentTime) { isHostTimeoutScheduled = false; advanceTimers(currentTime); if (!isHostCallbackScheduled) { if (peek(taskQueue) !== null) { isHostCallbackScheduled = true; requestHostCallback(flushWork); } else { var firstTimer = peek(timerQueue); if (firstTimer !== null) { requestHostTimeout(handleTimeout, firstTimer.startTime - currentTime); } } } } function flushWork(hasTimeRemaining, initialTime) { if (enableProfiling) { markSchedulerUnsuspended(initialTime); } // We'll need a host callback the next time work is scheduled. isHostCallbackScheduled = false; if (isHostTimeoutScheduled) { // We scheduled a timeout but it's no longer needed. Cancel it. isHostTimeoutScheduled = false; cancelHostTimeout(); } isPerformingWork = true; var previousPriorityLevel = currentPriorityLevel; try { if (enableProfiling) { try { return workLoop(hasTimeRemaining, initialTime); } catch (error) { if (currentTask !== null) { var currentTime = exports.unstable_now(); markTaskErrored(currentTask, currentTime); currentTask.isQueued = false; } throw error; } } else { // No catch in prod codepath. return workLoop(hasTimeRemaining, initialTime); } } finally { currentTask = null; currentPriorityLevel = previousPriorityLevel; isPerformingWork = false; if (enableProfiling) { var _currentTime = exports.unstable_now(); markSchedulerSuspended(_currentTime); } } } function workLoop(hasTimeRemaining, initialTime) { var currentTime = initialTime; advanceTimers(currentTime); currentTask = peek(taskQueue); while (currentTask !== null && !(enableSchedulerDebugging && isSchedulerPaused)) { if (currentTask.expirationTime > currentTime && (!hasTimeRemaining || shouldYieldToHost())) { // This currentTask hasn't expired, and we've reached the deadline. break; } var callback = currentTask.callback; if (callback !== null) { currentTask.callback = null; currentPriorityLevel = currentTask.priorityLevel; var didUserCallbackTimeout = currentTask.expirationTime <= currentTime; markTaskRun(currentTask, currentTime); var continuationCallback = callback(didUserCallbackTimeout); currentTime = exports.unstable_now(); if (typeof continuationCallback === 'function') { currentTask.callback = continuationCallback; markTaskYield(currentTask, currentTime); } else { if (enableProfiling) { markTaskCompleted(currentTask, currentTime); currentTask.isQueued = false; } if (currentTask === peek(taskQueue)) { pop(taskQueue); } } advanceTimers(currentTime); } else { pop(taskQueue); } currentTask = peek(taskQueue); } // Return whether there's additional work if (currentTask !== null) { return true; } else { var firstTimer = peek(timerQueue); if (firstTimer !== null) { requestHostTimeout(handleTimeout, firstTimer.startTime - currentTime); } return false; } } function unstable_runWithPriority(priorityLevel, eventHandler) { switch (priorityLevel) { case ImmediatePriority: case UserBlockingPriority: case NormalPriority: case LowPriority: case IdlePriority: break; default: priorityLevel = NormalPriority; } var previousPriorityLevel = currentPriorityLevel; currentPriorityLevel = priorityLevel; try { return eventHandler(); } finally { currentPriorityLevel = previousPriorityLevel; } } function unstable_next(eventHandler) { var priorityLevel; switch (currentPriorityLevel) { case ImmediatePriority: case UserBlockingPriority: case NormalPriority: // Shift down to normal priority priorityLevel = NormalPriority; break; default: // Anything lower than normal priority should remain at the current level. priorityLevel = currentPriorityLevel; break; } var previousPriorityLevel = currentPriorityLevel; currentPriorityLevel = priorityLevel; try { return eventHandler(); } finally { currentPriorityLevel = previousPriorityLevel; } } function unstable_wrapCallback(callback) { var parentPriorityLevel = currentPriorityLevel; return function () { // This is a fork of runWithPriority, inlined for performance. var previousPriorityLevel = currentPriorityLevel; currentPriorityLevel = parentPriorityLevel; try { return callback.apply(this, arguments); } finally { currentPriorityLevel = previousPriorityLevel; } }; } function timeoutForPriorityLevel(priorityLevel) { switch (priorityLevel) { case ImmediatePriority: return IMMEDIATE_PRIORITY_TIMEOUT; case UserBlockingPriority: return USER_BLOCKING_PRIORITY; case IdlePriority: return IDLE_PRIORITY; case LowPriority: return LOW_PRIORITY_TIMEOUT; case NormalPriority: default: return NORMAL_PRIORITY_TIMEOUT; } } function unstable_scheduleCallback(priorityLevel, callback, options) { var currentTime = exports.unstable_now(); var startTime; var timeout; if (typeof options === 'object' && options !== null) { var delay = options.delay; if (typeof delay === 'number' && delay > 0) { startTime = currentTime + delay; } else { startTime = currentTime; } timeout = typeof options.timeout === 'number' ? options.timeout : timeoutForPriorityLevel(priorityLevel); } else { timeout = timeoutForPriorityLevel(priorityLevel); startTime = currentTime; } var expirationTime = startTime + timeout; var newTask = { id: taskIdCounter++, callback: callback, priorityLevel: priorityLevel, startTime: startTime, expirationTime: expirationTime, sortIndex: -1 }; if (enableProfiling) { newTask.isQueued = false; } if (startTime > currentTime) { // This is a delayed task. newTask.sortIndex = startTime; push(timerQueue, newTask); if (peek(taskQueue) === null && newTask === peek(timerQueue)) { // All tasks are delayed, and this is the task with the earliest delay. if (isHostTimeoutScheduled) { // Cancel an existing timeout. cancelHostTimeout(); } else { isHostTimeoutScheduled = true; } // Schedule a timeout. requestHostTimeout(handleTimeout, startTime - currentTime); } } else { newTask.sortIndex = expirationTime; push(taskQueue, newTask); if (enableProfiling) { markTaskStart(newTask, currentTime); newTask.isQueued = true; } // Schedule a host callback, if needed. If we're already performing work, // wait until the next time we yield. if (!isHostCallbackScheduled && !isPerformingWork) { isHostCallbackScheduled = true; requestHostCallback(flushWork); } } return newTask; } function unstable_pauseExecution() { isSchedulerPaused = true; } function unstable_continueExecution() { isSchedulerPaused = false; if (!isHostCallbackScheduled && !isPerformingWork) { isHostCallbackScheduled = true; requestHostCallback(flushWork); } } function unstable_getFirstCallbackNode() { return peek(taskQueue); } function unstable_cancelCallback(task) { if (enableProfiling) { if (task.isQueued) { var currentTime = exports.unstable_now(); markTaskCanceled(task, currentTime); task.isQueued = false; } } // Null out the callback to indicate the task has been canceled. (Can't // remove from the queue because you can't remove arbitrary nodes from an // array based heap, only the first one.) task.callback = null; } function unstable_getCurrentPriorityLevel() { return currentPriorityLevel; } function unstable_shouldYield() { var currentTime = exports.unstable_now(); advanceTimers(currentTime); var firstTask = peek(taskQueue); return firstTask !== currentTask && currentTask !== null && firstTask !== null && firstTask.callback !== null && firstTask.startTime <= currentTime && firstTask.expirationTime < currentTask.expirationTime || shouldYieldToHost(); } var unstable_requestPaint = requestPaint; var unstable_Profiling = enableProfiling ? { startLoggingProfilingEvents: startLoggingProfilingEvents, stopLoggingProfilingEvents: stopLoggingProfilingEvents, sharedProfilingBuffer: sharedProfilingBuffer } : null; exports.unstable_ImmediatePriority = ImmediatePriority; exports.unstable_UserBlockingPriority = UserBlockingPriority; exports.unstable_NormalPriority = NormalPriority; exports.unstable_IdlePriority = IdlePriority; exports.unstable_LowPriority = LowPriority; exports.unstable_runWithPriority = unstable_runWithPriority; exports.unstable_next = unstable_next; exports.unstable_scheduleCallback = unstable_scheduleCallback; exports.unstable_cancelCallback = unstable_cancelCallback; exports.unstable_wrapCallback = unstable_wrapCallback; exports.unstable_getCurrentPriorityLevel = unstable_getCurrentPriorityLevel; exports.unstable_shouldYield = unstable_shouldYield; exports.unstable_requestPaint = unstable_requestPaint; exports.unstable_continueExecution = unstable_continueExecution; exports.unstable_pauseExecution = unstable_pauseExecution; exports.unstable_getFirstCallbackNode = unstable_getFirstCallbackNode; exports.unstable_Profiling = unstable_Profiling; })(); }