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1 Introduction
The GSTP system has been developed at the University of
Milan with the objective of providing universal access to the
implementation of a set of algorithms for multi-granularity
temporal constraint satisfaction. The many formalisms and
algorithms proposed in the literature for Temporal Constraint
Satisfaction Problems (TCSP) have essentially ignored the
subtleties involved in the presence of multiple time granu-
larities in the temporal constraints. Examples of simple con-
straints specified in terms of a time granularity are the fol-
lowing: “package shipment must occurthe next business day
after check clearance” and “package delivery should occur
during working hours”. More technically, the GSTP sys-
tem allows the user to specify binary constraints of the form
Y − X ∈ [m,n]G, wherem andn are the minimum and
maximum values of the distance betweenX andY in terms of
granularityG. Variables take values in the positive integers,
and unary constraints can be applied on their domains. This
can be considered the extension of STP[Dechteret al.1991]
to multiple and arbitrary granularities.

A first issue in the representation and processing of these
constraints is the need for a clear semantics for time gran-
ularities. Business days, for example, may really have dif-
ferent meanings in different countries or even in different
companies. In this respect GSTP adopts a formalism, first
introduced in[Wang et al.1997; Bettiniet al.1998], which
can model arbitrary user-defined time granularities and has
a clear set-theoretic semantics. In order to guarantee a fi-
nite representation, granularities in GSTP are limited to those
that can be defined in terms of periodic sets. Hours, days,
weeks, business days, business weeks, fiscal years, and aca-
demic semesters are common examples.

A second issue is related to the difficulty to reduce a net-
work of constraints given in terms of different granularities
into an equivalent one with all constraints in terms of the same
granularity, so that some of the standard algorithms for CSP,
like consistency checking through arc- or path-consistency
[Bessiere 1994; Dechteret al.1991], could be successfully
applied. Indeed, any conversion necessarily introduces an
approximation; For example, the above constraint imposing
delivery to start the next business day may be translated in
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terms of hours with a minimum of 1 hour and a maximum of
95 hours. (The number 95 takes into account a check clear-
ance at the beginning of a Friday and a shipment at the end
of next Monday according to the constraint.) However, if the
check is cleared on Monday, the new constraint would allow
a shipment on Thursday which is clearly a violation of the
original constraint. Approximate conversion algorithms are
extensively discussed in[Bettini et al.1998]. We have shown
that any consistency algorithm adopting these conversions as
the only tool to reduce the problem to a standard CSP is in-
evitably incomplete, and have proposed a different algorithm,
called ACG, which has been proved to be complete[Bettini
et al.2002].

GSTP, in addition to implementing the reasoning algo-
rithms, assists the user in the definition of constraint net-
works, in their submission to a remote processing service and
in the analysis of the output.

2 The Algorithms
The most interesting part of the system is perhaps the imple-
mentation of the ACG algorithm which has been recently pro-
posed in[Bettini et al.2002]. It is based on arc-consistency,
and it is essentially an extension of the AC-3 algorithm
[Mackworth et al.1985] to deal with possibly infinite (but
periodic) domains and with constraints in terms of multiple
periodic granularities. This extension is not trivial since it in-
volves the algebraic manipulation of the mathematical char-
acterization of granularities. ACG also derives theminimal
solution for the constraint network.

Repeat
1. Conversion+PC
2. ACG
3. RefineEdgesFromNodes()

Until no change is observed
Return Inconsistentor NewNetwork+solution

Figure 1: The main loop of the constraint solver

Despite several optimizations have been introduced in the
implementation, ACG greatly benefits from any preprocess-
ing phase that can refine some of the original constraints. This
is the main reason why GSTP integrates with ACG an approx-
imate algorithm, proposed in[Bettini et al.1998], and based
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on the conversion of constraints in different granularities fol-
lowed by path consistency. The interaction of the two algo-
rithms is also used to further refine the original constraints.

Fig. 1 shows the three main steps behind the GSTP con-
straint solver. In step 1, the original network is decomposed
in as many networks as are the granularities appearing in the
constraints; each network has the explicit constraints given
in terms of one granularity as well as constraints in the same
granularity obtained by conversion from others on the same
edge, but in terms of different granularities. Then, standard
path consistency is applied to each network. The resulting
network most likely has refined constraints with respect to
the original one. Any inconsistency captured by this process-
ing has the effect of terminating the constraint solver report-
ing the inconsistency status. However, if this is not the case,
the network may still be inconsistent and it will go through
ACG, the complete consistency algorithm (step 2). From the
node domains returned by ACG, it is possible to further refine
some of the constraints (the function doing this job in step 3
is calledRefineEdgesFromNodes()). The steps are repeated,
since path consistency applied to the refined constraints may
lead to some changes. Our experiments show that after few
iterations of the main loop a fixpoint is always reached.

3 The GSTP Architecture
Fig. 2 shows the general architecture of the GSTP system.
There are three main modules: the constraint solver, the web
service, which enables external access to the solver, and a
user interface that can be used locally or remotely to design
and analyze constraint networks.

XML

Web Service
GSTP constraint solverXML

SOAP / HTTP

Figure 2: The GSTP Architecture

The constraint solver is the C implementation of the al-
gorithms described above, and it runs on a server machine.
The Web Service defines, through a WSDL specification, the
parameters that can be passed to the constraint solver, includ-
ing the XML schema for the constraint network specification;
It accepts connections through soap/http from client appli-
cations or other web services which require constraint pro-
cessing, it invokes the solver after validating the parameters,
and it passes back the results. The third module is a remote
java-based user interface, which is extensively described in
the system demo. It allows the user to easily edit constraint

networks, to submit them to the constraint solver, and to ana-
lyze results. In particular, it is possible to have views in terms
of specific granularities, to visualize implicit constraints, to
browse descriptions of domains, and to obtain a network so-
lution. Fig. 3 shows a screenshot from the interface.

Figure 3: The User Interface
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