Storage, Processing and
Reliability on Google's
Google Distributed Systems

Dario Freni, Google
dariofreni@google.com

mailto:dariofreni@google.com
mailto:dariofreni@google.com

Google

Outline

e Organizing information
o Protocol buffers
o Google File System
o Bigtable

i} ’ o _ o Spanner/F1
Google’s mission is e Processing information

fo organise the world’s o MapReduce
information and make it o Flume

universally accessible and o MilWheel
y e Serving information

useful.” o High Availability

Google

Organizing information

Google's systems are storing enormous amount of data, examples:
e web index!

e cache archive of web pages

e all YouTube videos

e Maps and related information

e GMail data

e Picasa/ Google+ photos

Google

Storage systems

Over the years many different
storage technologies have been
developed at Google.

e Code and implementations
proprietary, BUT

e Results are often shared with
the research community

O many open source
alternatives available

http://research.google.com/

Example names:

Chubby

Google File System
Bigtable

Megastore
Colossus

Blobstore

Spanner

F1

http://research.google.com/
http://research.google.com/

Google

Protocol buffers

e Structured representation of
data
e Message definition is
compiled into native classes
o most languages supported
e \Why not
JSON/XML/Whatever?
o Efficiency
o Compactness
o Safer wrt backwards
compatibility

Example message definition:

message WebPage {

required
required
repeated
optional

string url = 1;
string html = 2;
string keywords =
bool visited = 4;

3;

Google

Protocol buffers

e Structured representation of
data
e Message definition is

compiled into native classe§«
o most languages suppV

e Why not
JSON/XMLMWbtE

0 Efflc;lep/
O @

©)

(just search "Protocol Buffers" on Google to find it)

Example #

GV*C@

rlng html =
Lo “string keywords
,rbnal bool visited =

)

3;

Google

GFS - Google File System

“A massively distributed and fault tolerant
file system that efficiently stores and retrieves data”

e Distributed storage filesystem
e Provides basic POSIX calls for files
o open(), read(), write(), close()
e Allows multiple client to access simultaneously
e Improves availability of the data by storing multiple copies in
different machines

Google

GFS - Architecture

Masters |—> Replicas data flow

ol i <>
control flow

| (_X, /ﬁ: N

Chunkserver 1 Chunkserver 2 Chunkserver N

Google

GFS - Colossus

The original implementation of GFS is now > 10 years old

To accommodate new requirements, we currently use a new
technology code named Colossus:

e Uses Bigtable technology to store metadata
o (will explain Bigtable in a bit)

e Increases the file size limits

e Improves the latency

e Decrease storage usage

o Redundancy can be achieved by using Reed-Solomon encodings
m (Google "Reed-Solomon" for more details)

Google

Bigtable

e Distributed, multi-dimensional sorted map
e Designed to store billions of rows

e Scale across thousands of machines
o in one datacenter

e Provide data replication
o across multiple datacenters

e Built on top of GFS

Google
Bigtable

“contents:” Columns

Rows

“‘www.cnn.com’

Ti:mestamps

Google

Bigtable - Tablets

e Large tables broken into tablets at row boundaries

o Tablet holds contiguous range of rows
o Aim for ~100MB to 200MB of data per tablet

e Serving machine responsible for ~100 tablets
o Fast recovery:
m 100 machines each pick up 1 tablet from failed machine
o Fine-grained load balancing:
m Migrate tablets away from overloaded machine
m Master makes load-balancing decisions

Google

From Bigtable to Spanner

Bigtable good, but...
e does not support transactions: atomicity is only guaranteed at the
row-level
o replicated Bigtables are only eventually consistent
e does not support relational tables: for application requiring
complex, evolving schemas, Bigtable can be difficult to use.

Other systems were built on top of Bigtable trying to fix this:
e e.g.: Megastore for supporting transactions and replication. There
Is only so much you can do without adding too much complexity.

Google

Spanner

A new system, named Spanner, has been studied and developed for

years to provide stronger guarantees than Bigtable wrt transactions
and global replication.

Distributed multiversion database

e General-purpose transactions (ACID)
e SQL query language

e Schematized tables

e Semi-relational data model

Google

Spanner

"Designed to scale up to millions of machines across hundreds of
datacenters and trillions of database rows"

e Like Bigtable, data is versioned
o the timestamp of each version is the commit time
e Global distribution of data is configurable

o e.g.: data can automatically be moved closer to its most frequent
users

e Provide strong consistency guarantees
o external consistency of reads and writes
o global consistent reads across the database at a timestamp
m useful e.g. for backups, MapReduce executions, atomic schema changes

Google

Spanner - Implementation

universemaster

placement driver

Zone 1

zonemaster

location
proxy

| spanserver

Zone 2 Zone 3
zonemaster zonemaster
location location
| proxy | proxy
| spanserver 4 spanserver

Google

Spanner - Implementation

e Each spanserver contains 100-
1000 tablets.
e Tablets are replicated across
datacenters (zones)
e Distributed locking happens at a
tablet-level
o At each transaction the commit

timestamp is confirmed across
zones using Paxos.

o This is made possible by a

particular "uncertain” time
representation (TrueTime).

universemaster

placement driver

Zone 1 Zone 2 Zone 3
zonemaster zonemaster zonemaster
M . | | A A 1 - A 1
location location location
i proxy i proxy i proxy
1 | | | |
1 1 1
|| spanserver | | spanserver spanserver

Google

F1

Features
e Relational schema
o Consistent indexes
o Extensions for hierarchy and

rich data types
m Protocol buffers!

o Non-blocking schema
changes
e Multiple interfaces
o SQL, key/value R/W,
MapReduce
e Change notifications

‘ Client \

server

F1 query
workers

Y

NN

Spanner
server

v

=

Google

F1 | Client I

Architecture

Y

e Sharded Spanner servers F1
o data on GFS and in memory / server
e Stateless F1 server
e \Worker pools for distributed F1 query
SQL execution workers "
q Y

\ Spanner

server

Y

=

Google

F1

Column data types are mostly Protocol Buffers

e Stored like blobs in Spanner
e SQL syntax extensions for reading nested fields
e Coarser schema with fewer tables - inlined objects instead

Why useful?

e Protocol Buffers pervasive at Google — no impedance mismatch
e Simplified schema and code - apps use the same objects
o Don't need foreign keys or joins if data is inlined

Google

F1 - SQL on Protocol Buffers

SELECT CustomerId, Whitelist

FROM Customer

Customerld

Whitelist

123

feature {

feature id: 18

status:

}

feature {

ENABLED

feature id: 269

status:

}

feature {

feature 1id:

status:

ENABLED

302
ENABLED

SELECT CustomerId,
FROM Customer c
PROTO JOIN c.Whitelist.feature £

WHERE f£.feature id IN (269,
AND f.status =

£f.=*

302)

'"ENABLED'

Customerld

feature id

status

123

269

ENABLED

123

302

ENABLED

Google

Have a break!

See you in 10 minutes!

Google

MapReduce

e Programming model for processing and generating large data sets
e Can be applied to a large variety of problems
e Allows for parallel computation of problems of the following form:

map: (k1,v1) — list(k2,v2)
reduce: (k2,list(v2)) — list(v2)

e \Where k1 and v1 is an input key-value map, and v2 is the desired
output

Google

MapReduce

Example: counting number of
occurrences of each word in a
large set of documents.

Map function emits a symbolic "1"
per each word

Reduce gets called once per each
unique word, with the list of values
associated to it.

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator
values):
// key: a wonrd
// values: a list of counts
int result = 0;
for each v in values:
result += ParselInt(v);
Emit(AsString(result));

Google

MapReduce

The system performs an important
extra step between Map and
Reduce, informally called Shuffle:

map: (k1,v1) — list(k2,v2)
shuffle: list(k2,v2) — (k2,list(v2))
reduce: (k2,list(v2)) — list(v2)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator
values):
// key: a wonrd
// values: a list of counts
int result = 0;
for each v in values:
result += ParselInt(v);
Emit(AsString(result));

Google
MapReduce - Architecture

User
Program

1) fork .* : LI
”m.' (1) fork t1) fork

. (2)

@) assign
_assign reduce .
 map '

split 0
split 1 (5) remote read
split 2 —M.@ (4) local write
split 3
split 4
Input Map Intermediate files

files phase (on local disks)

worker

Reduce
phase

(6) write

output
file 0

output
file 1

Output
files

Google

MapReduce

Plenty of possible applications, simple examples:
e Distributed Grep
o Map-only, emit results if a keyword is found
e Count URL clicks
o Inputis weblogs, Map emits <URL, 1>, Reduce emits <URL, count>
e Reverse Web-Link graph

o Map scans all the target links from each source page
m emits <target, source>

o Reduce concatenates the list of all the sources
m emits <target, list(source)>

You can concatenate multiple MapReduces for doing more complex
algorithms
e Dbut it can start to become unmaintanable

Google

FlumedJava

e API| + Library
o Java library for writing data-parallel pipelines
o Classes for (possibly huge) immutable collections
o Methods for data-parallel operations
o Builds execution graph implicitly via "lazy execution”

e Optimizer
o Fuses data-parallel operations, forms MapReduces

e Executor
o Runs optimized execution graph
o Garbage collection, task parallelism, fault tolerance, monitoring

Google

Flumedava - Example: TopWords

PCollection<String> lines =
readTextFile("...");
PCollection<String> words =
lines.parallelDo (
new ExtractWordsFn()) ;
PTable<String,Long> wordCounts =
words.count () ;
PTable<String,Long> topWords =
wordCounts. top (
new WordOrderFn (), 1000);
PCollection<String> formattedOutput=
topWords .parallelDo (
new FormatFn());
formattedOutput.writeToTextFile

("...");

FlumeJava.run() ;

class FormatFn extends
MapFn<Pair<String,Long>,String>() {
public String map (
Pair<String, Long> pair) {
return pair.getFirst() +
": " 4+ pair.getSecond() ;

Google
Flumedava - Example: TopWords

readTextFile(...)

class FormatFn extends
.parallelDo (new ExtractWordsFn()) MapFn<Pair<String,Long>,String>() ({
.count () public String map (
. top (new WordOrderFn (), 1000) Pair<String, Long> pair) {
.parallelDo (new FormatFn()) return pair.getFirst() +
.writeToTextFile(...);

": " 4+ pair.getSecond() ;
}
FlumeJava.run() ;

Google

Reiad
FlumeJava - [ExtractWords]
Execution Plan and Optimizer I
[Count/Map]
e Represent the deferred . l i
computation as a graph :< S—— >:

e Basic operation primitives: l .
ParallelDo (DoFn) | Count/Combine
GroupByKey l
CombineValues (CombFn) ' Top/Map
Flatten l

Top/GBK

'

Top/R_educe

'

Format

'

Write

O O O O

—— o~ - -
—_—— N

Google

FlumedJava -
Execution Plan and Optimizer

Fuse trees of parallelDo into one

e producer-consumer

e co-consumer ("siblings")

e ecliminate now-unused
intermediate PCollections

Form MapReduces

e pDo* + gbk + cv + pDo* -->
MapShuffleCombineReduce
(MSCR)

e Multi-mapper, multi-reducer,
multi-output

Read

ExtractWords]

Count/Map

Count/
Combine

|

I
<< Count/GBK >
|

Y

Top/Map

J

Top/GBK

Top/Reduce
Format
Write

~

J

Google

MillWheel

Flume and MapReduce are suitable for processing data in batch.
e This means that the only way to process new input data is to
reprocess all the input dataset.

MillWheel is a system to process large streams of data
e Millions of events per second

Low-latency analysis is becoming increasingly important
e Breaking news articles

e Intrusion detection

e Quickly shutting down spammers

Many custom, problem-specific solutions were being built.
MillWheel aims to build a general framework.

Google

MillWheel

MillWheel is a framework for creating streaming analysis systems. It
provides a programming model and an underlying execution system.

e User-defined code runs in Computations
e Computations are connected by Streams
e Records flow along edges as (key, value, timestamps) tuples

Model

Calculator | \
Web Window
= |

. =

2y, Spike/Dip
‘ii =
Notifications

Google

MillWheel

Processing is per key. Computations can access and mutate state for
the current record’s key, set and process timers, and produce records.

MillWnheel System Binary

User Code: Computation
@ ProcessRecord
I

ProcessTimer

|_ State Timer Produce
API

‘ Persistent State |

Google
MillWheel

Each computation in the graph represents processing a keyspace
(might be several user functions). Edges are shuffle paths, and (key,
value, timestamp, sequence number) quadruples flow along then.
Timestamps are determined by data sources, not by MillWheel.

filter + extract
filter + extract

filter + extract

filter + extract

(vet, 4, 10:26, 3)

C tation 2
Computation 1 omputation

Google

MillWheel

Each computation is range sharded across many workers. A single

key is managed by a single worker at a time, allowing us to consistently
update per-key persistent state.

[, foo)

[foo, mat)

[mat, sun)

[sun,) (vet, 4, 10:26, 3)

tation 2
Computation 1 Computation

Google

Available on Google Cloud!

MapReduce framework already available in App Engine
e Java and Python supported
o Search for "MapReduce App Engine" to find more.

Flume + MillWheel is offered as Google Cloud Dataflow product:
e You can download and play with the SDK
o https://github.com/GoogleCloudPlatform/DataflowJavaSDK
e You can request access for using it in your Google Compute
Engine instances

https://github.com/GoogleCloudPlatform/DataflowJavaSDK
https://github.com/GoogleCloudPlatform/DataflowJavaSDK

Google

Reliability - machines aren't perfect

Our services need to stay up 24/7. Reasons are obvious:
e itis what users expect!

But this stuff runs on many servers, and servers can break. Servers will
break. Example:

e Power supplies Mean Time Between Failures is 100000 hours
o 10000 machines mean one PSU will fail every 10 hours

e |It's not a matter of if, it's just a matter of when.

Google

Reliability - machines aren't perfect (2)

How can we make sure the service stays up despite machine failures?

Software must be design to cope with failures:
e It must be capable of running on several machines and fail over
gracefully if a machine breaks

e It's desirable to run N+2 instances of the software in production, to
increase fault-tolerance

Google

Reliability - people aren't perfect either

Software bugs will happen. How can we minimize the impact?

Extensive testing, e.g. when making changes to the code
e unit testing

e integration testing

Before rolling out the code
e regression testing
e staging environment

Google

Reliability - people aren't perfect either (2)

Gradual roll-out of the new releases to production, for example:

e update one machine, check if looks good

e update all machines in one datacenter, check if they look good
e repeat for all datacenters

At this scale, it is unfeasible to do this manually.
This and similar processes require sophisticated automation.

Challenging problem: how can you do the "check if looks good" step
with 100% confidence when rolling out a new version of Search?

Google

Reliability - What happens when something goes wrong?

Monitoring systems are in place and (hopefully) generate alerts when
something goes wrong

Alerts go to one person on-call

e Critical services are managed by Site Reliability Engineers

e They have a 24/7 on-call rotation which usually includes teams
from different continents to avoid being on-call at night

e Each engineer is usually on-call 10-15% of their time, depending on
the number of people in the rotation

Google

Reliability - What happens when something goes wrong? (2)

"OMG panic what should | do!"

SREs are trained to face the most difficult situations:
e they have in-depth knowledge of the services they are on-call for
e they have amazing troubleshooting skills

e they have been trained to handle incidents
o more people can be contacted if deemed necessary
o everyone helps when it's about resolving production issues

Technical Internships

The hiring for 2015 interns is concluded. We will start looking for 2016 interns
in September 2015. Check out google.com/jobs/students for more information.
Apply online at google.com/jobs/students and submit your CV and transcripts
You apply for a role, not a specific project

Internships take place year-round

Start/end dates are flexible

Are at least three months of full-time work

Paid

You can intern in Google offices globally

We do not offer Master Thesis internships

A Software Engineering Intern at Google:

Must be currently pursuing a BS, MS or PhD in Computer Science or a similar
technical field. Must start and end before they graduate

Must have experience in systems software or algorithms

Must have excellent programming skills (C++, Java, or Python)

Must have knowledge of UNIX/Linux or Windows environments and APIs

Go gle'" DO COOL THINGS THAT : MATTER

New Grad Roles

You should apply if you:

e areinyour final year of higher education or out of university less than 12 months
e apply for positions globally throughout the year online at www.google.
com/jobs/students

e We have a lot of openings in Europe (Zurich, London) and in Mountain View,
California

Go gle"‘ DO COOL THINGS THAT : MATTER

http://www.google.com/jobs/students
http://www.google.com/jobs/students
http://www.google.com/jobs/students
http://www.google.com/jobs/students

What's the format of an interview?

e Step 1: Short introduction
e Step 2: Main part of the interview / technical assessment
e Step 3: Your chance to ask questions

e There won't be puzzle questions - they don't reflect your
problem solving/coding/design abilities!

e Questions will be in-depth. We want to see how you think
about complicated problems.

e The right answer would be nice but it is not necessary - your
thought process is more important

Go gle'" DO COOL THINGS THAT : MATTER

What skills are we looking to assess?

. Language syntax, idioms, performance issues
. Algorithms and data structures

. Analytical skills

. Sound design

. Communication skills

Go gle'" DO COOL THINGS THAT : MATTER

MORE INFORMATION

g.co/techstudentsEMEA

B9 f§ M

