
Storage, Processing and
Reliability on Google's
Distributed Systems
Dario Freni, Google
dariofreni@google.com

mailto:dariofreni@google.com
mailto:dariofreni@google.com

Outline

● Organizing information
○ Protocol buffers
○ Google File System
○ Bigtable
○ Spanner/F1

● Processing information
○ MapReduce
○ Flume
○ MillWheel

● Serving information
○ High Availability

"Google's mission is
to organise the world's
information and make it

universally accessible and
useful."

Organizing information

Google's systems are storing enormous amount of data, examples:

● web index!

● cache archive of web pages

● all YouTube videos

● Maps and related information

● GMail data

● Picasa / Google+ photos

Storage systems

Example names:

● Chubby
● Google File System
● Bigtable
● Megastore
● Colossus
● Blobstore
● Spanner
● F1

Over the years many different
storage technologies have been
developed at Google.

● Code and implementations
proprietary, BUT

● Results are often shared with
the research community
○ many open source

alternatives available

http://research.google.com/

http://research.google.com/
http://research.google.com/

Protocol buffers

Example message definition:

message WebPage {
 required string url = 1;
 required string html = 2;
 repeated string keywords = 3;
 optional bool visited = 4;
}

● Structured representation of
data

● Message definition is
compiled into native classes
○ most languages supported

● Why not
JSON/XML/Whatever?
○ Efficiency
○ Compactness
○ Safer wrt backwards

compatibility

Protocol buffers

Example message definition:

message WebPage {
 required string url = 1;
 required string html = 2;
 repeated string keywords = 3;
 optional bool visited = 4;
}

● Structured representation of
data

● Message definition is
compiled into native classes
○ most languages supported

● Why not
JSON/XML/Whatever?
○ Efficiency
○ Compactness
○ Safer wrt backwards

compatibilityOPE
N S

OUR
CE

(just search "Protocol Buffers" on Google to find it)

GFS - Google File System

“A massively distributed and fault tolerant
file system that efficiently stores and retrieves data”

● Distributed storage filesystem
● Provides basic POSIX calls for files

○ open(), read(), write(), close()
● Allows multiple client to access simultaneously
● Improves availability of the data by storing multiple copies in

different machines

GFS - Architecture

Masters

C0 C1

C2C5

Chunkserver 1 Chunkserver N

C1

C3C5

Chunkserver 2

Clients

Replicas

C0

C2

C5

data flow

control flow

GFS - Colossus

The original implementation of GFS is now > 10 years old

To accommodate new requirements, we currently use a new
technology code named Colossus:

● Uses Bigtable technology to store metadata
○ (will explain Bigtable in a bit)

● Increases the file size limits
● Improves the latency
● Decrease storage usage

○ Redundancy can be achieved by using Reed-Solomon encodings
■ (Google "Reed-Solomon" for more details)

Bigtable

● Distributed, multi-dimensional sorted map

● Designed to store billions of rows

● Scale across thousands of machines
○ in one datacenter

● Provide data replication
○ across multiple datacenters

● Built on top of GFS

Bigtable

“www.cnn.com”

“contents:”

Rows

Columns

Timestamps

t

3
t11

t17
“<html>…”

Bigtable - Tablets

● Large tables broken into tablets at row boundaries
○ Tablet holds contiguous range of rows
○ Aim for ~100MB to 200MB of data per tablet

● Serving machine responsible for ~100 tablets
○ Fast recovery:

■ 100 machines each pick up 1 tablet from failed machine
○ Fine-grained load balancing:

■ Migrate tablets away from overloaded machine
■ Master makes load-balancing decisions

From Bigtable to Spanner

Bigtable good, but…
● does not support transactions: atomicity is only guaranteed at the

row-level
○ replicated Bigtables are only eventually consistent

● does not support relational tables: for application requiring
complex, evolving schemas, Bigtable can be difficult to use.

Other systems were built on top of Bigtable trying to fix this:
● e.g.: Megastore for supporting transactions and replication. There

is only so much you can do without adding too much complexity.

Spanner

A new system, named Spanner, has been studied and developed for
years to provide stronger guarantees than Bigtable wrt transactions
and global replication.

Distributed multiversion database
● General-purpose transactions (ACID)
● SQL query language
● Schematized tables
● Semi-relational data model

Spanner

"Designed to scale up to millions of machines across hundreds of
datacenters and trillions of database rows"

● Like Bigtable, data is versioned
○ the timestamp of each version is the commit time

● Global distribution of data is configurable
○ e.g.: data can automatically be moved closer to its most frequent

users
● Provide strong consistency guarantees

○ external consistency of reads and writes
○ global consistent reads across the database at a timestamp

■ useful e.g. for backups, MapReduce executions, atomic schema changes

Spanner - Implementation

universemaster placement driver

Zone 1

zonemaster

location
proxy
location
proxy

spanserverspanserverspanserver

Zone 2

zonemaster

location
proxy
location
proxy

spanserverspanserverspanserver

Zone 3

zonemaster

location
proxy
location
proxy

spanserverspanserverspanserver

● Each spanserver contains 100-
1000 tablets.

● Tablets are replicated across
datacenters (zones)

● Distributed locking happens at a
tablet-level
○ At each transaction the commit

timestamp is confirmed across
zones using Paxos.

○ This is made possible by a
particular "uncertain" time
representation (TrueTime).

Spanner - Implementation

universemaster placement driver

Zone 1

zonemaster

location
proxy
location
proxy

spanserverspanserverspanserver

Zone 2

zonemaster

location
proxy
location
proxy

spanserverspanserverspanserver

Zone 3

zonemaster

location
proxy
location
proxy

spanserverspanserverspanserver

F1

Features
● Relational schema

○ Consistent indexes
○ Extensions for hierarchy and

rich data types
■ Protocol buffers!

○ Non-blocking schema
changes

● Multiple interfaces
○ SQL, key/value R/W,

MapReduce
● Change notifications

F1
server

Spanner
server

GFS

Client

F1 query
workers

F1

Architecture
● Sharded Spanner servers

○ data on GFS and in memory
● Stateless F1 server
● Worker pools for distributed

SQL execution

F1
server

Spanner
server

GFS

Client

F1 query
workers

F1

Column data types are mostly Protocol Buffers
● Stored like blobs in Spanner
● SQL syntax extensions for reading nested fields
● Coarser schema with fewer tables - inlined objects instead

Why useful?
● Protocol Buffers pervasive at Google → no impedance mismatch
● Simplified schema and code - apps use the same objects

○ Don't need foreign keys or joins if data is inlined

F1 - SQL on Protocol Buffers

SELECT CustomerId, f.*

FROM Customer c
PROTO JOIN c.Whitelist.feature f
WHERE f.feature_id IN (269, 302)
 AND f.status = 'ENABLED'

SELECT CustomerId, Whitelist

FROM Customer

CustomerId Whitelist

123 feature {
 feature_id: 18
 status: ENABLED
}
feature {
 feature_id: 269
 status: ENABLED
}
feature {
 feature_id: 302
 status: ENABLED
}

CustomerId feature_id status

123 269 ENABLED

123 302 ENABLED

Have a break!

See you in 10 minutes!

MapReduce

● Programming model for processing and generating large data sets
● Can be applied to a large variety of problems
● Allows for parallel computation of problems of the following form:

map: (k1,v1) → list(k2,v2)
reduce: (k2,list(v2)) → list(v2)

● Where k1 and v1 is an input key-value map, and v2 is the desired
output

MapReduce

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator
values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

Example: counting number of
occurrences of each word in a
large set of documents.

Map function emits a symbolic "1"
per each word

Reduce gets called once per each
unique word, with the list of values
associated to it.

MapReduce

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator
values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

The system performs an important
extra step between Map and
Reduce, informally called Shuffle:

map: (k1,v1) → list(k2,v2)
shuffle: list(k2,v2) → (k2,list(v2))
reduce: (k2,list(v2)) → list(v2)

MapReduce - Architecture

MapReduce

Plenty of possible applications, simple examples:
● Distributed Grep

○ Map-only, emit results if a keyword is found
● Count URL clicks

○ Input is weblogs, Map emits <URL, 1>, Reduce emits <URL, count>
● Reverse Web-Link graph

○ Map scans all the target links from each source page
■ emits <target, source>

○ Reduce concatenates the list of all the sources
■ emits <target, list(source)>

You can concatenate multiple MapReduces for doing more complex
algorithms
● but it can start to become unmaintanable

FlumeJava

● API + Library
○ Java library for writing data-parallel pipelines
○ Classes for (possibly huge) immutable collections
○ Methods for data-parallel operations
○ Builds execution graph implicitly via "lazy execution"

● Optimizer
○ Fuses data-parallel operations, forms MapReduces

● Executor
○ Runs optimized execution graph
○ Garbage collection, task parallelism, fault tolerance, monitoring

FlumeJava - Example: TopWords

class FormatFn extends
MapFn<Pair<String,Long>,String>() {
 public String map(
 Pair<String, Long> pair) {
 return pair.getFirst() +
 ": " + pair.getSecond();
 }
}

PCollection<String> lines =
 readTextFile("...");
PCollection<String> words =
 lines.parallelDo(
 new ExtractWordsFn());
PTable<String,Long> wordCounts =
 words.count();
PTable<String,Long> topWords =
 wordCounts.top(
 new WordOrderFn(), 1000);
PCollection<String> formattedOutput=
 topWords.parallelDo(
 new FormatFn());
formattedOutput.writeToTextFile
("...");

FlumeJava.run();

FlumeJava - Example: TopWords

class FormatFn extends
MapFn<Pair<String,Long>,String>() {
 public String map(
 Pair<String, Long> pair) {
 return pair.getFirst() +
 ": " + pair.getSecond();
 }
}

readTextFile(...)
 .parallelDo(new ExtractWordsFn())
 .count()
 .top(new WordOrderFn(), 1000)
 .parallelDo(new FormatFn())
 .writeToTextFile(...);

FlumeJava.run();

FlumeJava -
Execution Plan and Optimizer

● Represent the deferred
computation as a graph

● Basic operation primitives:
○ ParallelDo (DoFn)
○ GroupByKey
○ CombineValues (CombFn)
○ Flatten

Read

ExtractWords

Count

Top

Format

Write

Read

ExtractWords

Count/Map

Count/Combine

Top/Map

Count/GBK

Top/Reduce

Top/GBK

Format

Write

FlumeJava -
Execution Plan and Optimizer

Fuse trees of parallelDo into one
● producer-consumer
● co-consumer ("siblings")
● eliminate now-unused

intermediate PCollections

Form MapReduces
● pDo* + gbk + cv + pDo* -->

MapShuffleCombineReduce
(MSCR)

● Multi-mapper, multi-reducer,
multi-output

Read

ExtractWords

Count/Map

Count/Combine

Top/Map

Count/GBK

Top/Reduce

Top/GBK

Format

Write

Read

ExtractWords
Count/Map

Count/
Combine

Top/Map

Count/GBK

Top/Reduce
Format
Write

Top/GBK

MillWheel

Flume and MapReduce are suitable for processing data in batch.
● This means that the only way to process new input data is to

reprocess all the input dataset.

MillWheel is a system to process large streams of data
● Millions of events per second

Low-latency analysis is becoming increasingly important
● Breaking news articles
● Intrusion detection
● Quickly shutting down spammers

Many custom, problem-specific solutions were being built.
MillWheel aims to build a general framework.

MillWheel

MillWheel is a framework for creating streaming analysis systems. It
provides a programming model and an underlying execution system.

● User-defined code runs in Computations
● Computations are connected by Streams
● Records flow along edges as (key, value, timestamps) tuples

MillWheel

Processing is per key. Computations can access and mutate state for
the current record’s key, set and process timers, and produce records.

MillWheel

Each computation in the graph represents processing a keyspace
(might be several user functions). Edges are shuffle paths, and (key,
value, timestamp, sequence number) quadruples flow along then.
Timestamps are determined by data sources, not by MillWheel.

filter + extract

filter + extract

filter + extract

filter + extract

count

count

count

(far, 1, 10:22, 4)

(toy, 8, 10:25, 1)

(lake, 2, 10:24, 2)

(vet, 4, 10:26, 3)

Computation 1
Computation 2

MillWheel

Each computation is range sharded across many workers. A single
key is managed by a single worker at a time, allowing us to consistently
update per-key persistent state.

[, foo)

[foo, mat)

[mat, sun)

[sun,)

[, her)

[her, riy)

[riy,)

(far, 1, 10:22, 4)

(toy, 8, 10:25, 1)

(lake, 2, 10:24, 2)

(vet, 4, 10:26, 3)

Computation 1
Computation 2

Available on Google Cloud!

MapReduce framework already available in App Engine
● Java and Python supported

○ Search for "MapReduce App Engine" to find more.

Flume + MillWheel is offered as Google Cloud Dataflow product:
● You can download and play with the SDK

○ https://github.com/GoogleCloudPlatform/DataflowJavaSDK
● You can request access for using it in your Google Compute

Engine instances

https://github.com/GoogleCloudPlatform/DataflowJavaSDK
https://github.com/GoogleCloudPlatform/DataflowJavaSDK

Reliability - machines aren't perfect

Our services need to stay up 24/7. Reasons are obvious:
● it is what users expect!

But this stuff runs on many servers, and servers can break. Servers will
break. Example:

● Power supplies Mean Time Between Failures is 100000 hours
○ 10000 machines mean one PSU will fail every 10 hours

● It's not a matter of if, it's just a matter of when.

Reliability - machines aren't perfect (2)

How can we make sure the service stays up despite machine failures?

Software must be design to cope with failures:
● It must be capable of running on several machines and fail over

gracefully if a machine breaks
● It's desirable to run N+2 instances of the software in production, to

increase fault-tolerance

Reliability - people aren't perfect either

Software bugs will happen. How can we minimize the impact?

Extensive testing, e.g. when making changes to the code
● unit testing
● integration testing

Before rolling out the code
● regression testing
● staging environment

Reliability - people aren't perfect either (2)

Gradual roll-out of the new releases to production, for example:
● update one machine, check if looks good
● update all machines in one datacenter, check if they look good
● repeat for all datacenters

At this scale, it is unfeasible to do this manually.

This and similar processes require sophisticated automation.

Challenging problem: how can you do the "check if looks good" step
with 100% confidence when rolling out a new version of Search?

Reliability - What happens when something goes wrong?

Monitoring systems are in place and (hopefully) generate alerts when
something goes wrong

Alerts go to one person on-call
● Critical services are managed by Site Reliability Engineers
● They have a 24/7 on-call rotation which usually includes teams

from different continents to avoid being on-call at night
● Each engineer is usually on-call 10-15% of their time, depending on

the number of people in the rotation

Reliability - What happens when something goes wrong? (2)

"OMG panic what should I do!"

SREs are trained to face the most difficult situations:

● they have in-depth knowledge of the services they are on-call for

● they have amazing troubleshooting skills

● they have been trained to handle incidents
○ more people can be contacted if deemed necessary
○ everyone helps when it's about resolving production issues

Technical Internships

• The hiring for 2015 interns is concluded. We will start looking for 2016 interns
in September 2015. Check out google.com/jobs/students for more information.

• Apply online at google.com/jobs/students and submit your CV and transcripts
• You apply for a role, not a specific project
• Internships take place year-round
• Start/end dates are flexible
• Are at least three months of full-time work
• Paid
• You can intern in Google offices globally
• We do not offer Master Thesis internships

A Software Engineering Intern at Google:
• Must be currently pursuing a BS, MS or PhD in Computer Science or a similar

technical field. Must start and end before they graduate
• Must have experience in systems software or algorithms
• Must have excellent programming skills (C++, Java, or Python)
• Must have knowledge of UNIX/Linux or Windows environments and APIs

New Grad Roles

You should apply if you:

● are in your final year of higher education or out of university less than 12 months
● apply for positions globally throughout the year online at www.google.

com/jobs/students
● We have a lot of openings in Europe (Zurich, London) and in Mountain View,

California

http://www.google.com/jobs/students
http://www.google.com/jobs/students
http://www.google.com/jobs/students
http://www.google.com/jobs/students

What's the format of an interview?

● Step 1: Short introduction
● Step 2: Main part of the interview / technical assessment
● Step 3: Your chance to ask questions

● There won't be puzzle questions - they don't reflect your
problem solving/coding/design abilities!

● Questions will be in-depth. We want to see how you think
about complicated problems.

● The right answer would be nice but it is not necessary – your
thought process is more important

What skills are we looking to assess?

● Language syntax, idioms, performance issues
● Algorithms and data structures
● Analytical skills
● Sound design
● Communication skills

Thanks!

