distribution.proto 7.06 KB
Newer Older
Luca Arrotta's avatar
Luca Arrotta committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
// Copyright 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

syntax = "proto3";

package google.api;

import "google/api/annotations.proto";
import "google/protobuf/any.proto";
import "google/protobuf/timestamp.proto";

option go_package = "google.golang.org/genproto/googleapis/api/distribution;distribution";
option java_multiple_files = true;
option java_outer_classname = "DistributionProto";
option java_package = "com.google.api";


// Distribution contains summary statistics for a population of values and,
// optionally, a histogram representing the distribution of those values across
// a specified set of histogram buckets.
//
// The summary statistics are the count, mean, sum of the squared deviation from
// the mean, the minimum, and the maximum of the set of population of values.
//
// The histogram is based on a sequence of buckets and gives a count of values
// that fall into each bucket.  The boundaries of the buckets are given either
// explicitly or by specifying parameters for a method of computing them
// (buckets of fixed width or buckets of exponentially increasing width).
//
// Although it is not forbidden, it is generally a bad idea to include
// non-finite values (infinities or NaNs) in the population of values, as this
// will render the `mean` and `sum_of_squared_deviation` fields meaningless.
message Distribution {
  // The range of the population values.
  message Range {
    // The minimum of the population values.
    double min = 1;

    // The maximum of the population values.
    double max = 2;
  }

  // A Distribution may optionally contain a histogram of the values in the
  // population.  The histogram is given in `bucket_counts` as counts of values
  // that fall into one of a sequence of non-overlapping buckets.  The sequence
  // of buckets is described by `bucket_options`.
  //
  // A bucket specifies an inclusive lower bound and exclusive upper bound for
  // the values that are counted for that bucket.  The upper bound of a bucket
  // is strictly greater than the lower bound.
  //
  // The sequence of N buckets for a Distribution consists of an underflow
  // bucket (number 0), zero or more finite buckets (number 1 through N - 2) and
  // an overflow bucket (number N - 1).  The buckets are contiguous:  the lower
  // bound of bucket i (i > 0) is the same as the upper bound of bucket i - 1.
  // The buckets span the whole range of finite values: lower bound of the
  // underflow bucket is -infinity and the upper bound of the overflow bucket is
  // +infinity.  The finite buckets are so-called because both bounds are
  // finite.
  //
  // `BucketOptions` describes bucket boundaries in one of three ways.  Two
  // describe the boundaries by giving parameters for a formula to generate
  // boundaries and one gives the bucket boundaries explicitly.
  //
  // If `bucket_boundaries` is not given, then no `bucket_counts` may be given.
  message BucketOptions {
    // Specify a sequence of buckets that all have the same width (except
    // overflow and underflow).  Each bucket represents a constant absolute
    // uncertainty on the specific value in the bucket.
    //
    // Defines `num_finite_buckets + 2` (= N) buckets with these boundaries for
    // bucket `i`:
    //
    //    Upper bound (0 <= i < N-1):     offset + (width * i).
    //    Lower bound (1 <= i < N):       offset + (width * (i - 1)).
    message Linear {
      // Must be greater than 0.
      int32 num_finite_buckets = 1;

      // Must be greater than 0.
      double width = 2;

      // Lower bound of the first bucket.
      double offset = 3;
    }

    // Specify a sequence of buckets that have a width that is proportional to
    // the value of the lower bound.  Each bucket represents a constant relative
    // uncertainty on a specific value in the bucket.
    //
    // Defines `num_finite_buckets + 2` (= N) buckets with these boundaries for
    // bucket i:
    //
    //    Upper bound (0 <= i < N-1):     scale * (growth_factor ^ i).
    //    Lower bound (1 <= i < N):       scale * (growth_factor ^ (i - 1)).
    message Exponential {
      // Must be greater than 0.
      int32 num_finite_buckets = 1;

      // Must be greater than 1.
      double growth_factor = 2;

      // Must be greater than 0.
      double scale = 3;
    }

    // A set of buckets with arbitrary widths.
    //
    // Defines `size(bounds) + 1` (= N) buckets with these boundaries for
    // bucket i:
    //
    //    Upper bound (0 <= i < N-1):     bounds[i]
    //    Lower bound (1 <= i < N);       bounds[i - 1]
    //
    // There must be at least one element in `bounds`.  If `bounds` has only one
    // element, there are no finite buckets, and that single element is the
    // common boundary of the overflow and underflow buckets.
    message Explicit {
      // The values must be monotonically increasing.
      repeated double bounds = 1;
    }

    // Exactly one of these three fields must be set.
    oneof options {
      // The linear bucket.
      Linear linear_buckets = 1;

      // The exponential buckets.
      Exponential exponential_buckets = 2;

      // The explicit buckets.
      Explicit explicit_buckets = 3;
    }
  }

  // The number of values in the population. Must be non-negative.
  int64 count = 1;

  // The arithmetic mean of the values in the population. If `count` is zero
  // then this field must be zero.
  double mean = 2;

  // The sum of squared deviations from the mean of the values in the
  // population.  For values x_i this is:
  //
  //     Sum[i=1..n]((x_i - mean)^2)
  //
  // Knuth, "The Art of Computer Programming", Vol. 2, page 323, 3rd edition
  // describes Welford's method for accumulating this sum in one pass.
  //
  // If `count` is zero then this field must be zero.
  double sum_of_squared_deviation = 3;

  // If specified, contains the range of the population values. The field
  // must not be present if the `count` is zero.
  Range range = 4;

  // Defines the histogram bucket boundaries.
  BucketOptions bucket_options = 6;

  // If `bucket_options` is given, then the sum of the values in `bucket_counts`
  // must equal the value in `count`.  If `bucket_options` is not given, no
  // `bucket_counts` fields may be given.
  //
  // Bucket counts are given in order under the numbering scheme described
  // above (the underflow bucket has number 0; the finite buckets, if any,
  // have numbers 1 through N-2; the overflow bucket has number N-1).
  //
  // The size of `bucket_counts` must be no greater than N as defined in
  // `bucket_options`.
  //
  // Any suffix of trailing zero bucket_count fields may be omitted.
  repeated int64 bucket_counts = 7;
}